投票法的原理分析
投票法:投票法是一种遵循少数服从多数原则的集成学习模型,通过多个模型的集成降低方差,从而提高模型的鲁棒性。在理想情况下,投票法的预测效果应当优于任何一个基模型的预测效果。
- 分类1:
- 回归投票法:预测结果是所有模型预测结果的平均值。
- 分类投票法:预测结果是所有模型种出现最多的预测结果。
- 分类2:
- 硬投票:预测结果是所有投票结果最多出现的类。
- 软投票:预测结果是所有投票结果中概率加和最大的类。
- 产生较好结果的条件:
- 基模型之间的效果不能差别过大。当某个基模型相对于其他基模型效果过差时,该模型很可能成为噪声。
- 基模型之间应该有较小的同质性。例如在基模型预测效果近似的情况下,基于树模型与线性模型的投票,往往优于两个树模型或两个线性模型。
- 选择:当投票合集中使用的模型能预测出清晰的类别标签时,适合使用硬投票。当投票集合中使用的模型能预测类别的概率时,适合使用软投票。
- 局限性:它对所有模型的处理是一样的,这意味着所有模型对预测的贡献是一样的。一些模型在某些情况下很好,而在其他情况下很差,此时直接使用投票法是有问题的。
案例
# test classification dataset
from sklearn.datasets import make_classification
# define dataset
X, y = make_classification(n_samples=1000, n_features=20,
n_informative=15, n_redundant=5, random_state=2)
# summarize the dataset
print(X.shape, y.shape)
# 使用多个KNN模型作为基模型演示投票法,其中每个模型采用不同的邻居值K参数
# get a voting ensemble of models
def get_voting():
# define the base models models = list()
models.append(('knn1', KNeighborsClassifier(n_neighbors=1)))
models.append(('knn3', KNeighborsClassifier(n_neighbors=3)))
models.append(('knn5', KNeighborsClassifier(n_neighbors=5)))
models.append(('knn7', KNeighborsClassifier(n_neighbors=7)))
models.append(('knn9', KNeighborsClassifier(n_neighbors=9)))
# define the voting ensemble
ensemble = VotingClassifier(estimators=models, voting='hard')
return ensemble
# 创建一个模型列表来评估投票带来的提升,包括KNN模型配置的每个独立版本和硬投票模型
# get a list of models to evaluate
def get_models():
models = dict() models['knn1'] = KNeighborsClassifier(n_neighbors=1)
models['knn3'] = KNeighborsClassifier(n_neighbors=3)
models['knn5'] = KNeighborsClassifier(n_neighbors=5)
models['knn7'] = KNeighborsClassifier(n_neighbors=7)
models['knn9'] = KNeighborsClassifier(n_neighbors=9)
models['hard_voting'] = get_voting()
return models
# evaluate_model()函数接收一个模型实例,并以分层10倍交叉验证三次重复的分数列表的形式返回
# evaluate a give model using cross-validation
def evaluate_model(model, X, y):
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1, error_score='raise')
return scores
# 报告每个算法的平均性能,还可以创建一个箱形图和须状图来比较每个算法的精度分数分布
# define dataset
X, y = get_dataset()
# get the models to evaluate
models = get_models()
# evaluate the models and store results
results, names = list(), list()
for name, model in models.items():
scores = evaluate_model(model, X, y)
results.append(scores)
names.append(name)
print('>%s %.3f (%.3f)' % (name, mean(scores), std(scores)))
# plot model performance for comparison
pyplot.boxplot(results, labels=names, showmeans=True)
pyplot.show()
参考资料:
https://github.com/datawhalechina/team-learning-data-mining/tree/master/EnsembleLearning