- 博客(4)
- 资源 (3)
- 收藏
- 关注
原创 MMDetection3D学习笔记_坐标系
在 3D 目标检测中,框 Box 通常表示为:(x, y, z, x_size, y_size, z_size, yaw)。(x, y, z)表示框的中心点的坐标;表示框的尺寸,且按惯例我们定义为物体 3D 框在朝向角yaw 角度为 0 时沿着 x, y, z 轴三个方向的长度;yaw:包围框的旋转角度只考虑朝向角 yaw,不考虑俯仰角 pitch 和翻滚角 roll。
2025-06-18 16:44:41
339
原创 MMDetection3D学习笔记_整体架构
对于点云 3D 检测(多模态 3D 检测),我们继承自 MMDetection 中的 BaseDetector 构建了适用于 3D 检测的 Base3DDetector。不同于 SingleStage3DDetector,为了尽可能的复用已有的代码组件,二阶段检测器TwoStage3DDetector同时继承自 Base3DDetector 和 TwoStageDetector。而由于多模态任务的特殊性,我们专门为多模态检测方法设计了 MVXTwoStage3DDetector。
2025-06-17 18:19:45
1871
原创 **CVPR2024: RCBEVDET 用于 3D 目标检测的Radar - Camera融合鸟瞰图方法
三维目标检测是自动驾驶领域的关键任务之一。为了降低实际应用中的成本,有研究提出用低成本的多视角摄像头取代昂贵的激光雷达(LiDAR)传感器来进行 3D 目标检测。然而,仅依靠摄像头难以实现高精度且稳健的 3D 目标检测。一个有效的解决方案是将多视角摄像头与经济型毫米波雷达传感器相结合,以实现更可靠多模态的 3D 目标检测。本文介绍了一种名为 RCBEVDet 的雷达 - 摄像头融合鸟瞰图(BEV)3D 目标检测方法。具体而言,我们首先设计了 RadarBEVNet 用于提取雷达的 BEV 特征。
2025-04-19 17:04:37
2151
原创 CVPR2025:DORACAMOM 全向感知中基于4D Radar 和 Camera数据融合的3D目标检测和占据预测
3D物体检测与占据预测是自动驾驶中的关键任务,受到广泛关注。尽管近期基于视觉的方法展现出潜力,但在恶劣条件下仍面临挑战。因此,将摄像头与新一代4D成像雷达结合以实现统一的多任务感知具有重要意义,但该领域的研究仍较为有限。本文提出DORACAMOM,首个通过融合多视角摄像头与4D雷达实现联合3D物体检测与语义占据预测的框架,旨在实现全面的环境感知。具体而言,我们提出一种粗体素查询生成器。
2025-04-09 17:38:46
1522
Keil uVersion.zip
2020-08-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人