sklearn.svm.LinearSVC

LinearSVC与SVC在结果上等效于线性核,但LinearSVC专用于线性核,计算速度更快。当需要线性SVM时,推荐使用LinearSVC以提高效率;若需其他核函数,则应选择SVC。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

class sklearn.svm.LinearSVC(penalty=’l2’loss=’squared_hinge’dual=Truetol=0.0001C=1.0multi_class=’ovr’fit_intercept=Trueintercept_scaling=1class_weight=Noneverbose=0random_state=Nonemax_iter=1000)

从结果的角度,LinearSVC和使用SVC且kernel传入linear,结果是一致的。但是由于LinearSVC只能计算线性核,而SVC可以计算任意核,所以,他们的底层计算方式不一样,这使得同样使用线性核的SVC,用LinearSVC的计算速度,要比用SVC且kernel传入linear参数,快很多。所以,整体而言,如果你决定使用线性SVM,就使用LinearSVC,但如果你要是用其他核的SVM,就只能使用SVC:)

参数:

penalty : 字符串,'l1'或'l2'(默认='l2')

指定惩罚中使用的规范。'l2'惩罚是SVC中使用的标准。'l1'导致coef_ 稀疏的向量。

loss : string,'hinge'或'squared_hinge'(默认='squared_hinge')

指定损失函数。'hinge'是标准SVM损失(例如由SVC类使用),而'squared_hinge'是铰链损失的平方。

dual : bool,(默认= True)

选择算法以解决双重或原始优化问题。当n_samples> n_features时,首选dual = False。

tol : float,optional(默认值= 1e-4)

容忍停止标准。

: float,可选(默认值= 1.0)

错误术语的惩罚参数C.

multi_class : string,'ovr'或'crammer_singer'(默认='ovr')

如果y包含两个以上的类,则确定多类策略。 "ovr"训练n_classes one-vs-rest分类器,同时"crammer_singer"优化所有类的联合目标。虽然crammer_singer从理论角度来看它很有意义,但它在实践中很少使用,因为它很少能够提高准确性并且计算成本更高。如果"crammer_singer"选择,则选项丢失,惩罚和双重将被忽略。

fit_intercept : boolean,optional(default = True)

是否计算此模型的截距。如果设置为false,则不会在计算中使用截距(即数据预计已经居中)。

intercept_scaling : float,optional(默认值= 1)

当self.fit_intercept为True时,实例向量x变为 ,即具有等于intercept_scaling的常量值的“合成”特征被附加到实例向量。截距变为intercept_scaling *合成特征权重注意!合成特征权重与所有其他特征一样经受l1 / l2正则化。为了减少正则化对合成特征权重(并因此对截距)的影响,必须增加intercept_scaling。[x, self.intercept_scaling]

class_weight : {dict,'balanced'},可选

将类i的参数C设置class_weight[i]*C为SVC。如果没有给出,所有课程都应该有一个重量。“平衡”模式使用y的值自动调整与输入数据中的类频率成反比的权重n_samples / (n_classes * np.bincount(y))

verbose : int,(默认= 0)

启用详细输出。请注意,此设置利用liblinear中的每进程运行时设置,如果启用,则可能无法在多线程上下文中正常工作。

random_state : int,RandomState实例或None,可选(默认=无)

伪随机数生成器的种子,用于在对双坐标下降(if dual=True)的数据进行混洗时使用。当 dual=False底层实现LinearSVC 不是随机的并且random_state对结果没有影响时。如果是int,则random_state是随机数生成器使用的种子; 如果是RandomState实例,则random_state是随机数生成器; 如果为None,则随机数生成器是由其使用的RandomState实例 np.random

max_iter : int,(默认值= 1000)

要运行的最大迭代次数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值