【Python】金融系统开发中的致命隐患:浮点数精度坑你没商量!

本文强调了在进行数值计算时采用高精度的重要性,即便会增加复杂性。由于浮点数运算可能引入不确定性,因此建议在数据处理过程中始终使用高精度类型,以保证结果的准确无误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在金融业务系统的开发中,很多程序员一开始就埋下了一个“定时炸弹”——使用默认的浮点数(float)处理金额和比率数据

这看似无害,实则风险巨大,一旦规模变大、计算链条复杂,甚至牵涉到账务核对时,你就会发现:浮点误差带来的偏差,是难以复原和追责的黑洞!


🧨 为什么 float 在金融业务中“不可用”?

浮点数(float)是计算机中最常用的数据类型之一,但它并不是为精确计算设计的。这是因为浮点数采用二进制存储,很多我们在十进制中习以为常的数,在计算机中根本无法精确表示。

举个最简单的例子:

print(0.1 + 0.2)  # 输出 0.30000
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

踏雪无痕老爷子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值