
在金融业务系统的开发中,很多程序员一开始就埋下了一个“定时炸弹”——使用默认的浮点数(float)处理金额和比率数据。
这看似无害,实则风险巨大,一旦规模变大、计算链条复杂,甚至牵涉到账务核对时,你就会发现:浮点误差带来的偏差,是难以复原和追责的黑洞!
🧨 为什么 float 在金融业务中“不可用”?
浮点数(float)是计算机中最常用的数据类型之一,但它并不是为精确计算设计的。这是因为浮点数采用二进制存储,很多我们在十进制中习以为常的数,在计算机中根本无法精确表示。
举个最简单的例子:
print(0.1 + 0.2)