CNN简单介绍及基础知识

文章目录

 一)卷积神经网络历史沿革

二)CNN简单介绍

三)CNN相关基础知识


前言

在过去的几年里,卷积神经网络(CNN)引起了人们的广泛关注,尤其是因为它彻底改变了计算机视觉领域,它是近年来深度学习能在计算机视觉领域取得突破性成果的基石。它也逐渐在被其他诸如自然语言处理、推荐系统和语音识别等领域广泛使用。在这里,主要从三个方面介绍CNN,

  (1)CNN历史发展  (2)CNN简单介绍    (3)CNN相关基础知识


一、卷积神经网络历史沿革

卷积神经网络的发展最早可以追溯到上世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究,提出了感受野这个概念,到80年代,Fukushima在感受野概念的基础之上提出了神经认知机的概念,可以看作是卷积神经网络的第一个实现网络。 而后随着计算机软硬件技术的发展,尤其GPU,使得CNN快速发展,在2012年ImageNet大赛中CNN由于其高精确度脱颖而出,于是,深度学习正式进入人们的视野。而后,R-CNN,FAST-CNN,Faster-cnn等快速发展,在深度学习领域大放异彩。

  •  1962年 Hubel和Wiesel

    卷积神经网络的发展,最早可以追溯到1962年,Hubel和Wiesel对猫大脑中的视觉系统的研究。

  • 1980年 福岛邦彦

    1980年,日本科学家福岛邦彦在论文《Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position》提出了一个包含卷积层、池化层的神经网络结构

  • 1998年 Yann Lecun

    1998年,在这个基础上,Yann Lecun在论文《Gradient-Based Learning Applied to Document Recognition》中提出了LeNet-5,将BP算法应用到这个神经网络结构的训练上,就形成了当代卷积神经网络的雏形。

  • 2012年 Hinton组

      直到2012年,Imagenet图像识别大赛中,Hinton组的论文《ImageNet Classification with Deep Convolutional Neural Networks》中提到的Alexnet引入了全新的深层结构和dropout方法,一下子把error rate从25%以上提升到了15%,颠覆了图像识别领域。

<think>嗯,用户这次明确要求了解FasterR-CNN的基本概念和原理,参考了提供的资料信息。用户之前讨论过它在无人机火灾烟雾检测的应用,但这次需求回归到了算法本身的基础认知层面。用户可能是计算机视觉领域的学习者或工程师,需要系统性理解这个经典目标检测框架。从提问方式看,ta更关注原理层面的阐释而非实现细节。不过结合之前的对话历史,用户对技术落地应用也很敏感,所以原理讲解需要兼顾理论严谨性和实际应用逻辑。值得注意的要点是:首先必须区分清楚FasterR-CNN与R-CNN、FastR-CNN的关键差异点,特别是RPN这个核心创新。引用[1]和[4]提到了RPN的端到端训练机制,这是突破性设计。其次要解释清楚四个主要模块的协作关系:特征提取网络(如VGG/ResNet)、RPN、RoI池化层和分类回归头部。引用[5]详细说明了分类回归部分的结构,可以作为重点。训练策略方面,引用[4]提到的四步交替训练法需要简明扼要说明,这是确保共享卷积层有效的关键。考虑到用户可能接触过其他检测算法(如YOLO),可以隐含对比思想:FasterR-CNN通过"区域提名+检测"两阶段设计实现精度优势,但牺牲部分速度。这点在之前讨论无人机应用时提到过15fps的实测数据。准备用标准技术描述结合核心公式的展示方式。特别注意两点:一要强调RPN如何用锚框机制替代传统选择搜索,二要用数学表达式清晰展示边界框回归原理。对于RoI池化层,考虑用代码片段配合文字解释会更直观。在相关问题的设置上引导延伸学习:检测头设计选型是算法优化的常见方向,FPN和多尺度训练则针对用户之前关注的小目标检测场景,这些都能自然衔接历史对话。最后补充端到端理解的问题,为后续讨论具体实现留接口。对了,所有公式要用$$格式且确保latex语法正确。分类回归的损失函数组合是个重要知识点,考虑用两变量分式形式呈现。变量符号必须与原始论文一致,如边界框回归参数用$t$系列标识。</think> Faster R-CNN 是一种经典的两阶段目标检测算法,通过端到端的训练实现了高效的检测性能。其核心工作原理可分为四个关键模块(流程示意图可参考用户历史会话中的架构图): ### 一、算法原理概述 1. **统一框架** 将区域提名和目标检测整合为单网络结构,解决传统方法(如Selective Search)的效率瓶颈 > *核心突破:引入区域生成网络(RPN),实现近实时的区域提名[^1][^4]* 2. **基础架构流程** ```mermaid graph LR A[输入图像] --> B[CNN特征提取] B --> C{RPN生成候选框} C --> D[RoI池化] D --> E[分类+回归头部] ``` ### 二、核心组件详解 1. **特征提取网络(CNN骨干网)** - 输入图像经卷积网络(如VGG/ResNet)生成特征图 $$ \mathcal{F} = CNN(I),\quad I \in \mathbb{R}^{H×W×3} $$ - 输出高层语义特征图 $\mathcal{F} \in \mathbb{R}^{H'×W'×C}$ 2. **区域生成网络(RPN)** * **锚框机制**:在特征图每个位置生成 $k$ 个预设锚框(scale+aspect ratio)[^4] *典型设置:3尺度×3长宽比→9锚框/位置* * **双层预测**: - 分类层:预测锚框包含目标的概率 $p_i$ - 回归层:预测边界框偏移量 $(t_x,t_y,t_w,t_h)$ $$ t_x = (x - x_a)/w_a, \quad t_y = (y - y_a)/h_a $$ $$ t_w = \log(w/w_a), \quad t_h = \log(h/h_a) $$ * **候选框筛选**:采用非极大值抑制(NMS)输出Top-N区域提议 3. **RoI池化层(关键桥梁)** ```python def RoI_pooling(feature_map, rois, pool_size=7): # 将不同尺寸的候选区域映射为固定尺寸特征 pooled_features = [] for roi in rois: x,y,w,h = roi feature_patch = feature_map[y:y+h, x:x+w] # 划分7x7网格并取各网格最大值 pooled = adaptive_max_pool(feature_patch, pool_size) pooled_features.append(pooled) return stack(pooled_features) ``` > 解决变长输入问题,使全连接层可处理任意大小候选框[^5] 4. **分类与回归头部** - **分类分支**:Softmax输出类别概率分布 $\mathbf{p} = (p_0,p_1,...,p_K)$ - **回归分支**:精细调整边界框位置参数 $\mathbf{t} = (\Delta x,\Delta y,\Delta w,\Delta h)$ - **联合损失函数**: $$ \mathcal{L} = \frac{1}{N_{cls}}\sum_i\mathcal{L}_{cls}(p_i,p_i^*) + \lambda\frac{1}{N_{reg}}\sum_ip_i^*\mathcal{L}_{reg}(t_i,t_i^*) $$ 其中 $p_i^*$ 表示正样本标签(当IoU>0.7)[^4] ### 三、训练策略创新 1. **四步交替训练法**(解决参数共享问题)[^4]: | 步骤 | 训练模块 | 固定参数 | 更新参数 | |---|---|---|---| |1| RPN | CNN骨干网 | RPN特有层 | |2| 检测头部 | CNN骨干网 | 全连接层 | |3| RPN | 共享CNN | RPN特有层 | |4| 检测头部 | 共享CNN | 全连接层 | 2. **采样策略**: - RPN阶段:单图像采样256锚框(正:负≈1:1) - 检测阶段:单图像采样64候选框(正:负=1:3) ### 四、算法优势分析 1. **精度提升**:RPN与检测网络共享特征,避免重复计算(相比Fast R-CNN提速10倍) 2. **定位精度**:两阶段回归机制(RPN粗调+检测头微调)带来更高IoU 3. **扩展性强**:骨干网可替换为ResNet/FPN等提升小目标检测能力(参考用户历史会话中的无人机应用) ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值