历届试题 国王的烦恼
时间限制:1.0s 内存限制:256.0MB
问题描述
C国由n个小岛组成,为了方便小岛之间联络,C国在小岛间建立了m座大桥,每座大桥连接两座小岛。两个小岛间可能存在多座桥连接。然而,由于海水冲刷,有一些大桥面临着不能使用的危险。
如果两个小岛间的所有大桥都不能使用,则这两座小岛就不能直接到达了。然而,只要这两座小岛的居民能通过其他的桥或者其他的小岛互相到达,他们就会安然无事。但是,如果前一天两个小岛之间还有方法可以到达,后一天却不能到达了,居民们就会一起抗议。
现在C国的国王已经知道了每座桥能使用的天数,超过这个天数就不能使用了。现在他想知道居民们会有多少天进行抗议。
输入格式
输入的第一行包含两个整数n, m,分别表示小岛的个数和桥的数量。
接下来m行,每行三个整数a, b, t,分别表示该座桥连接a号和b号两个小岛,能使用t天。小岛的编号从1开始递增。
输出格式
输出一个整数,表示居民们会抗议的天数。
样例输入
4 4
1 2 2
1 3 2
2 3 1
3 4 3
样例输出
2
样例说明
第一天后2和3之间的桥不能使用,不影响。
第二天后1和2之间,以及1和3之间的桥不能使用,居民们会抗议。
第三天后3和4之间的桥不能使用,居民们会抗议。
数据规模和约定
对于30%的数据,1<=n<=20,1<=m<=100;
对于50%的数据,1<=n<=500,1<=m<=10000;
对于100%的数据,1<=n<=10000,1<=m<=100000,1<=a, b<=n, 1<=t<=100000。
吐槽:感觉这出题人并没有好好说清楚题意,不连通了到底是抗议一天,还是之后每天都抗议呢,那个样例也不能说明这点,不过嘛,正确的理解是前者,但是我觉得题目应该说是抗议的次数而不是天数,这题数据规模很大,c++用并查集可以过,java会超时,数据没给好,java应该给2s的,逆序加边,当它变成一颗最小生成树就break,感觉这算法就是最小生成树的kruskal算法思想,不过主要是并查集实现
这里也可以用哈希表统计抗议天数,注意java不能AC,用c++
import java.util.Arrays;
import java.util.Scanner;
public class 蓝桥杯_国王的烦恼 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
n = in.nextInt();
m = in.nextInt();
f = new int[n+5];
g = new Edge[m+5];
for(int i=1;i<=n;i++)
f[i] = i;
for(int i=0;i<m;i++)
g[i] = new Edge(in.nextInt(),in.nextInt(),in.nextInt());
Arrays.sort(g,0,m);
for(int i=0;i<m;i++) {
if(union(g[i].a,g[i].b)) {
if(x!=g[i].w) {
ans++;
x=g[i].w;
}
}
if(cnt==n-1) {
System.out.println(ans);
break;
}
}
}
static int n,m,cnt=0,ans=0,x=0;
static int[] f;
static Edge[] g;
static int find(int x) {
if(f[x]==x)
return x;
return f[x] = find(f[x]);
}
static boolean union(int x,int y) {
int a = find(x);
int b = find(y);
if(a!=b) {
f[a] = b;
cnt++;
return true;
}
return false;
}
static class Edge implements Comparable<Edge>{
int a,b,w;
public Edge(int a,int b,int w) {
this.a = a;
this.b = b;
this.w = w;
}
@Override
public int compareTo(Edge e) {
return e.w - this.w;//大->小
}
}
}