CCF CSP 201803-2 碰撞的小球(100分)进步的小糖

探讨了在一条长度为偶数的线段上,多个小球从偶数坐标出发,进行碰撞反弹的模拟问题。小球初始朝右移动,遇端点或相遇时改变方向,保持速度不变。通过跟踪每个小球的状态,实现了t秒后各小球位置的精确计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述
  数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
  当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
  当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
  现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。
提示
  因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
  同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。
输入格式
  输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
  第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。
输出格式
  输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。
样例输入
3 10 5
4 6 8
样例输出
7 9 9
样例说明
初始时,三个小球的位置分别为4, 6, 8。
在这里插入图片描述
在这里插入图片描述
样例输入
10 22 30
14 12 16 6 10 2 8 20 18 4
样例输出
6 6 8 2 4 0 4 12 10 2
数据规模和约定
  对于所有评测用例,1 ≤ n ≤ 100,1 ≤ t ≤ 100,2 ≤ L ≤ 1000,0 < ai < L。L为偶数。
  保证所有小球的初始位置互不相同且均为偶数。

解题思路:
存储每个小球的状态(正向运动或反向运动),由此可控制每次小球运动(++或–)。因为小球碰撞次数比较多,要得知上次小球运动方向才能求出此次碰撞方向,所以使其每次碰撞后加1(初始状态为正向运动 flag = 0),此后flag为偶数时正向运动,为奇数时反向运动。

#include <iostream>
using namespace std;

int main( )
{    //小球个数      t秒后小球位置
    int n,    l,    t;
          //线段长度
    int a[1002] = {0},flag[102];//正向为偶 反向为奇
       //小球初始位置
    
    cin >> n >> l >> t;
    
    for(int i = 0;i < n;i++)
    {
        cin >> a[i];
        if(a[i] < l)
        {
            flag[i] = 0;
        }
        else{
            flag[i] = 1;
        }
    }
    
    for(int i = 1;i <= t;i++) //时间
    {
        for(int j = 0;j < n;j++)//球
        {
            if(a[j] < l && flag[j] % 2 == 0)
            {
                a[j]++;
                for(int k = 0;k < n;k++) //撞到反向
                {
                    if(j != k && a[j] == a[k])
                    {
                        flag[k]++;
                        flag[j]++;
                    }
                }
            }
            else {
                if(a[j] == l || a[j] == 0)
                {
                    flag[j]++; //转向
                }
                if(flag[j] % 2 != 0)
                {
                    a[j]--;
                }
                else{
                    a[j]++;
                }
                for(int k = 0;k < n;k++) //撞到反向
                {
                    if(k != j && a[j] == a[k])
                    {
                        flag[k]++;
                        flag[j]++;
                    }
                }
            }
        }
        /*for(int j = 0;j < n;j++)
        {
            cout << a[j] << " ";
        }
        cout << endl;
    }*/
    
    for(int i = 0;i < n;i++)
    {
        cout << a[i] << " ";
    }
    return 0;
}

第一次写!有问题请指出,望谅解

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值