【ZOJ 4124】L - Median

本文介绍了一种算法,用于判断在给定的相对大小关系下,每个数是否能成为数列的中位数。通过构建有向图并求传递闭包,统计每个节点的大于和小于其他节点的数量,来确定其作为中位数的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.题目链接。题目大意:有n个数,给出m个他们之间相对的大小关系,问从这m个关系中,对于每一个数,是不是可以让这个数作为这个数列的中位数。

2.传递闭包加了一点点的改进。对整个图求完传递闭包之后,对于每个点记录一下有多少个比他的的,有多少个比它小的,然后如果这两个数据有任何一个是大于n/2的,那么显然是不成立的。否则是可能的。当然,特判一下不合法,在这个有向图里面不合法的地方就是有两个点存在双向边,说明存在a>b&&b>a.这显然是不存在的。如果存在这样的数据,说明整个序列不合法,全输出0.

#include<bits/stdc++.h>
using namespace std;
const int maxn = 110;
int mp[maxn][maxn];
int in[maxn], out[maxn];
int n, m;
#pragma warning(disable:4996)
void Floyd()
{
	for (int k = 1; k <= n; k++)
		for (int i = 1; i <= n; i++)
			for (int j = 1; j <= n; j++)
				mp[i][j] = mp[i][j] || (mp[i][k] && mp[k][j]);
}
int main()
{
	int T;
	scanf("%d", &T);
	while (T--)
	{
		scanf("%d%d", &n, &m);
		memset(mp, 0, sizeof(mp));
		memset(in, 0, sizeof(in));
		memset(out, 0, sizeof(out));
		for (int i = 1; i <= m; i++)
		{
			int u, v;
			scanf("%d%d", &u, &v);
			mp[u][v] = 1;
		}
		Floyd();
		bool flag1 = 0;
		for (int i = 1; i <= n; i++)
		{
			for (int j = 1; j <= n; j++)
			{
				if (mp[i][j] && mp[j][i])
				{
					flag1 = 1;
					break;
				}
			}
		}
		if (flag1)
		{
			for (int i = 1; i <= n; i++)
				printf("0");
			puts("");
			continue;
		}
		for (int i = 1; i <= n; i++)
		{
			for (int j = 1; j <= n; j++)
			{
				if (i != j&&mp[i][j])//mp[i][j]表示i比j大,那么比j大的加一,比i小的减一
				{
					in[j]++;
					out[i]++;
				}
			}
		}
		int mmax = n / 2;
		for (int i = 1; i <= n; i++)
		{
			
			if (in[i] > mmax || out[i] > mmax)
			{
				printf("0");
			}
			else
			{
				printf("1");
			}
		}
		puts("");
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值