奈奎斯特判据
Z=P−R Z = P - R Z=P−R
其中,PPP为开环传递函数在虚轴右侧的极点个数;RRR为开环奈奎斯特曲线逆时针绕(−1,j0)(-1,j0)(−1,j0) 的圈数,ZZZ 为闭环传递函数的极点个数。
若 Z=0Z=0Z=0,系统稳定,否则系统不稳定。
以下通过两个例子说明如何使用Nyquist判据判断系统稳定性。
例1

1.计算开环极点,得出在虚轴右侧的极点数 PPP
开环传递函数
G(s)H(s)=ss2+1⋅1=ss2+1 G(s)H(s) = \frac{s}{s^2 + 1} \cdot 1 = \frac{s}{s^2 + 1} G(s)H(s)=s2+1s⋅1=s2+1s
num = [1 0];
den = [1 0 1];
open_root = roots(den)
open_root =
0.0000 + 1.0000i
0.0000 - 1.0000i
其开环极点没有在虚轴右侧,故 P=0P=0P=0。
2.绘制Nyquist图,逆时针绕(−1,j0)(-1,j0)(−1,j0) 的圈数
num = [1 0];
den = [1 0 1];
open_root = roots(den);
open_sys = tf(num, den);
nyquist(open_sys);

逆时针绕(−1,j0)(-1, j0)(−1,j0) 共 0 圈,即 R=0R=0R=0。
3.判断结果
由于Z=P−R=0−0=0Z=P-R=0-0=0Z=P−R=0−0=0,故系统稳定。
4.验证
容易得出系统的闭环传递函数为
Φ(s)=G(s)1+G(s)H(s)=ss2+s+1 \Phi(s) = \frac{G(s)}{1+G(s)H(s)} = \frac{s}{s^2 + s + 1} Φ(s)=1+G(s)H(s)G(s)=s2+s+1s
其单位阶跃响应如下
num = [1 0];
den = [1 1 1];
close_sys = tf(num, den);
step(close_sys);

可见系统振幅逐渐减小,趋于稳定。
例2

1.计算开环极点,得出在虚轴右侧的极点数 PPP
开环传递函数
G(s)H(s)=s−2s3+1⋅1=s−2s3+1 G(s)H(s) = \frac{s-2}{s^3 + 1} \cdot 1 = \frac{s-2}{s^3 + 1} G(s)H(s)=s3+1s−2⋅1=s3+1s−2
num = [1 -2];
den = [1 0 0 1];
open_root = roots(den)
open_root =
-1.0000 + 0.0000i
0.5000 + 0.8660i
0.5000 - 0.8660i
有 2 个开环极点在虚轴右侧,故 P=2P=2P=2。
2.绘制Nyquist图,逆时针绕(−1,j0)(-1,j0)(−1,j0) 的圈数
num = [1 -2];
den = [1 0 0 1];
open_root = roots(den);
open_sys = tf(num, den);
nyquist(open_sys);

逆时针绕(−1,j0)(-1, j0)(−1,j0) 共 1 圈,即 R=1R=1R=1。
3.判断结果
由于Z=P−R=2−1≠0Z=P-R=2-1 \neq 0Z=P−R=2−1=0,故系统不稳定。
4.验证
容易得出系统的闭环传递函数为
Φ(s)=G(s)1+G(s)H(s)=s−2s3+s−1 \Phi(s) = \frac{G(s)}{1+G(s)H(s)} = \frac{s-2}{s^3 + s - 1} Φ(s)=1+G(s)H(s)G(s)=s3+s−1s−2
其单位阶跃响应如下
num = [1 -2];
den = [1 0 1 -1];
close_sys = tf(num, den);
step(close_sys);

可见系统振幅逐渐增大,不稳定。
总结
-
ZZZ的数学意义是闭环传递函数在右半平面的极点个数,P,RP, RP,R 都是开环传递函数的得到的, 因此Nyquist判据使用开环传递函数即可判断闭环系统的稳定性,避免求解闭环传递函数及闭环传递函数的根。由 ZZZ 的实际意义,容易理解 Z=0Z=0Z=0 时闭环系统自然稳定。
-
使用Nyquist判据,分三步走,一是判断写出开环传递函数并计算在虚轴右侧的极点个数PPP;二是绘制出Nyquist图并数出逆时针绕(−1,j0)(-1,j0)(−1,j0)点的圈数 RRR;三是计算 Z=P−RZ=P-RZ=P−R,若Z=0Z=0Z=0 则系统稳定,否则系统不稳定。
需要注意的是,由于手工往往只画出一半的Nyquist图,另一半关于实轴对称,此时数得包含(−1,j0)(-1,j0)(−1,j0)得圈数 NNN 应乘以 2,即 Z=P−2NZ=P-2NZ=P−2N。
— 完 —