实例解读奈奎斯特稳定判据


奈奎斯特判据


Z=P−R Z = P - R Z=PR

其中,PPP为开环传递函数在虚轴右侧的极点个数;RRR为开环奈奎斯特曲线逆时针绕(−1,j0)(-1,j0)(1,j0) 的圈数,ZZZ 为闭环传递函数的极点个数。

Z=0Z=0Z=0,系统稳定,否则系统不稳定。

以下通过两个例子说明如何使用Nyquist判据判断系统稳定性。


例1


1.计算开环极点,得出在虚轴右侧的极点数 PPP

开环传递函数

G(s)H(s)=ss2+1⋅1=ss2+1 G(s)H(s) = \frac{s}{s^2 + 1} \cdot 1 = \frac{s}{s^2 + 1} G(s)H(s)=s2+1s1=s2+1s

num = [1 0];
den = [1 0 1];
open_root = roots(den)	
open_root = 
   0.0000 + 1.0000i
   0.0000 - 1.0000i

其开环极点没有在虚轴右侧,故 P=0P=0P=0

2.绘制Nyquist图,逆时针绕(−1,j0)(-1,j0)(1,j0) 的圈数

num = [1 0];
den = [1 0 1];
open_root = roots(den);
open_sys = tf(num, den);
nyquist(open_sys);

逆时针绕(−1,j0)(-1, j0)(1,j0) 共 0 圈,即 R=0R=0R=0

3.判断结果

由于Z=P−R=0−0=0Z=P-R=0-0=0Z=PR=00=0,故系统稳定。

4.验证

容易得出系统的闭环传递函数为

Φ(s)=G(s)1+G(s)H(s)=ss2+s+1 \Phi(s) = \frac{G(s)}{1+G(s)H(s)} = \frac{s}{s^2 + s + 1} Φ(s)=1+G(s)H(s)G(s)=s2+s+1s

其单位阶跃响应如下

num = [1 0];
den = [1 1 1];
close_sys = tf(num, den);
step(close_sys);

可见系统振幅逐渐减小,趋于稳定。


例2


1.计算开环极点,得出在虚轴右侧的极点数 PPP

开环传递函数

G(s)H(s)=s−2s3+1⋅1=s−2s3+1 G(s)H(s) = \frac{s-2}{s^3 + 1} \cdot 1 = \frac{s-2}{s^3 + 1} G(s)H(s)=s3+1s21=s3+1s2

num = [1 -2];
den = [1 0 0 1];
open_root = roots(den)	
open_root =
  -1.0000 + 0.0000i
   0.5000 + 0.8660i
   0.5000 - 0.8660i

有 2 个开环极点在虚轴右侧,故 P=2P=2P=2

2.绘制Nyquist图,逆时针绕(−1,j0)(-1,j0)(1,j0) 的圈数

num = [1 -2];
den = [1 0 0 1];
open_root = roots(den);
open_sys = tf(num, den);
nyquist(open_sys);

逆时针绕(−1,j0)(-1, j0)(1,j0) 共 1 圈,即 R=1R=1R=1

3.判断结果

由于Z=P−R=2−1≠0Z=P-R=2-1 \neq 0Z=PR=21=0,故系统不稳定。

4.验证

容易得出系统的闭环传递函数为

Φ(s)=G(s)1+G(s)H(s)=s−2s3+s−1 \Phi(s) = \frac{G(s)}{1+G(s)H(s)} = \frac{s-2}{s^3 + s - 1} Φ(s)=1+G(s)H(s)G(s)=s3+s1s2

其单位阶跃响应如下

num = [1 -2];
den = [1 0 1 -1];
close_sys = tf(num, den);
step(close_sys);

可见系统振幅逐渐增大,不稳定。


总结
  1. ZZZ的数学意义是闭环传递函数在右半平面的极点个数,P,RP, RP,R 都是开环传递函数的得到的, 因此Nyquist判据使用开环传递函数即可判断闭环系统的稳定性,避免求解闭环传递函数及闭环传递函数的根。由 ZZZ 的实际意义,容易理解 Z=0Z=0Z=0 时闭环系统自然稳定。

  2. 使用Nyquist判据,分三步走,一是判断写出开环传递函数并计算在虚轴右侧的极点个数PPP;二是绘制出Nyquist图并数出逆时针绕(−1,j0)(-1,j0)(1,j0)点的圈数 RRR;三是计算 Z=P−RZ=P-RZ=PR,若Z=0Z=0Z=0 则系统稳定,否则系统不稳定。
    需要注意的是,由于手工往往只画出一半的Nyquist图,另一半关于实轴对称,此时数得包含(−1,j0)(-1,j0)(1,j0)得圈数 NNN 应乘以 2,即 Z=P−2NZ=P-2NZ=P2N

— 完 —

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大强强小强强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值