面试题集锦

一.Hadoop

1.hdfs写流程

2.hdfs读流程

3.hdfs的体系结构

4.一个datanode 宕机,怎么一个流程恢复

5.hadoop 的 namenode 宕机,怎么解决

6.namenode对元数据的管理

7.元数据的checkpoint

8.yarn资源调度流程 

9.hadoop中combiner和partition的作用

10.用mapreduce怎么处理数据倾斜问题?

11.shuffle 阶段,你怎么理解的

12.Mapreduce 的 map 数量 和 reduce 数量是由什么决定的 ,怎么配置

13.MapReduce优化经验

14.分别举例什么情况要使用 combiner,什么情况不使用?

15.MR运行流程解析

16.简单描述一下HDFS的系统架构,怎么保证数据安全?

17.在通过客户端向hdfs中写数据的时候,如果某一台机器宕机了,会怎么处理

18.Hadoop优化有哪些方面

19.大量数据求topN(写出mapreduce的实现思路)

20.列出正常工作的hadoop集群中hadoop都分别启动哪些进程以及他们的作用

21.Hadoop总job和Tasks之间的区别是什么?

22.Hadoop高可用HA模式

23.简要描述安装配置一个hadoop集群的步骤

24.fsimage和edit的区别

25.yarn的三大调度策略

26.hadoop的shell命令用的多吗?,说出一些常用的

二.Hive

1.大表join小表产生的问题,怎么解决?

2.udf udaf udtf区别

3.hive有哪些保存元数据的方式,个有什么特点。

4.hive内部表和外部表的区别

5.生产环境中为什么建议使用外部表?

6.insert into 和 override write区别?

7.hive的判断函数有哪些

8.简单描述一下HIVE的功能?用hive创建表几种方式?hive表有几种?

9.线上业务每天产生的业务日志(压缩后>=3G),每天需要加载到hive的log表中,将每天产生的业务日志在压缩之后load到hive的log表时,最好使用的压缩算法是哪个,并说明其原因

10.若在hive中建立分区仍不能优化查询效率,建表时如何优化

11.union all和union的区别

12.如何解决hive数据倾斜的问题

13.hive性能优化常用的方法

14.简述delete,drop,truncate的区别

15.四个by的区别

16.Hive 里边字段的分隔符用的什么?为什么用\t?有遇到过字段里 边有\t 的情况吗,怎么处理的?为什么不用 Hive 默认的分隔符,默认的分隔符是什么?

17.分区分桶的区别,为什么要分区

18.mapjoin的原理

19.在hive的row_number中distribute by 和 partition by的区别 

20.hive开发中遇到什么问题?

21.什么时候使用内部表,什么时候使用外部表

22.hive都有哪些函数,你平常工作中用到哪些

23.手写sql,连续活跃用户

24.left semi join和left join区别

25.group by为什么要排序

26.说说印象最深的一次优化场景,hive常见的优化思路

三.Spark

1.rdd的属性

2.算子分为哪几类(RDD支持哪几种类型的操作)

3.创建rdd的几种方式

4.spark运行流程

5.Spark中coalesce与repartition的区别

6.sortBy 和 sortByKey的区别

7.map和mapPartitions的区别

8.数据存入Redis  优先使用map mapPartitions  foreach  foreachPartions哪个

9.reduceByKey和groupBykey的区别

10.cache和checkPoint的比较

11.spark streaming流式统计单词数量代码

12.简述map和flatMap的区别和应用场景

13.计算曝光数和点击数

14.分别列出几个常用的transformation和action算子

15.按照需求使用spark编写以下程序,要求使用scala语言

16.spark应用程序的执行命令是什么?

17.Spark应用执行有哪些模式,其中哪几种是集群模式

18.请说明spark中广播变量的用途

19.以下代码会报错吗?如果会怎么解决 val arr = new ArrayList[String]; arr.foreach(println)

20.写出你用过的spark中的算子,其中哪些会产生shuffle过程

21.Spark中rdd与partition的区别

22.请写出创建Dateset的几种方式

23.描述一下RDD,DataFrame,DataSet的区别?

24.描述一下Spark中stage是如何划分的?描述一下shuffle的概念

25.Spark 在yarn上运行需要做哪些关键的配置工作?如何kill -个Spark在yarn运行中Application

26.通常来说,Spark与MapReduce相比,Spark运行效率更高。请说明效率更高来源于Spark内置的哪些机制?请列举常见spark的运行模式?

27.RDD中的数据在哪?

28.如果对RDD进行cache操作后,数据在哪里?

29.Spark中Partition的数量由什么决定

30.Scala里面的函数和方法有什么区别

31.SparkStreaming怎么进行监控?

32.Spark判断Shuffle的依据?

33.Scala有没有多继承?可以实现多继承么?

34.Sparkstreaming和flink做实时处理的区别

35.Sparkcontext的作用

36.Sparkstreaming读取kafka数据为什么选择直连方式

37.离线分析什么时候用sparkcore和sparksql

38.Sparkstreaming实时的数据不丢失的问题

39.简述宽依赖和窄依赖概念,groupByKey,reduceByKey,map,filter,union五种操作哪些会导致宽依赖,哪些会导致窄依赖

40.数据倾斜可能会导致哪些问题,如何监控和排查,在设计之初,要考虑哪些来避免

41.有一千万条短信,有重复,以文本文件的形式保存,一行一条数据,请用五分钟时间,找出重复出现最多的前10条

42.现有一文件,格式如下,请用spark统计每个单词出现的次数

43.共享变量和累加器

 44.当 Spark 涉及到数据库的操作时,如何减少 Spark 运行中的数据库连接数?

45.特别大的数据,怎么发送到excutor中?

46.spark调优都做过哪些方面?

47.spark任务为什么会被yarn kill掉?

48.Spark on Yarn作业执行流程?yarn-client和yarn-cluster有什么区别?

49.Flatmap底层编码实现?

        50.spark_1.X与spark_2.X区别 

        51.说说spark与flink

四.Kafka

1.Kafka名词解释和工作方式

2.Consumer与topic关系

3.kafka中生产数据的时候,如何保证写入的容错性?

4.如何保证kafka消费者消费数据是全局有序的

5.有两个数据源,一个记录的是广告投放给用户的日志,一个记录用户访问日志,另外还有一个固定的用户基础表记录用户基本信息(比如学历,年龄等等)。现在要分析广告投放对与哪类用户更有效,请采用熟悉的技术描述解决思路。另外如果两个数据源都是实时数据源(比如来自kafka),他们数据在时间上相差5分钟,需要哪些调整来解决实时分析问题?

6.Kafka和SparkStreaing如何集成?

7.列举Kafka的优点,简述Kafka为什么可以做到每秒数十万甚至上百万消息的高效分发?

8.为什么离线分析要用kafka?

9.Kafka怎么进行监控?

10.Kafka与传统的消息队列服务有很么不同

11.Kafka api  low-level与high-level有什么区别,使用low-level需要处理哪些细节

12.Kafka的ISR副本同步队列

13.Kafka消息数据积压,Kafka消费能力不足怎么处理?

14.Kafka中的ISR、AR又代表什么?

15.Kafka中的HW、LEO等分别代表什么?

16.哪些情景会造成消息漏消费?

17.当你使用kafka-topics.sh创建了一个topic之后,Kafka背后会执行什么逻辑?

18.topic的分区数可不可以增加?如果可以怎么增加?如果不可以,那又是为什么?

19.topic的分区数可不可以减少?如果可以怎么减少?如果不可以,那又是为什么?

20.Kafka有内部的topic吗?如果有是什么?有什么所用?

21.聊一聊Kafka Controller的作用?

22.失效副本是指什么?有那些应对措施?

五.Hbase

1.Hbase调优

2.hbase的rowkey怎么创建好?列族怎么创建比较好?

3.hbase过滤器实现用途

4.HBase宕机如何处理

5.hive跟hbase的区别是?

6.hbase写流程

7.hbase读流程

8.hbase数据flush过程

9.数据合并过程

10.Hmaster和Hgionserver职责

11.HBase列族和region的关系?

12.请简述Hbase的物理模型是什么

13.请问如果使用Hbase做即席查询,如何设计二级索引

14.如何避免读、写HBaes时访问热点问题?

15.布隆过滤器在HBASE中的应用

16.Hbase是用来干嘛的?什么样的数据会放到hbase

六.数仓

1.维表和宽表的考查(主要考察维表的使用及维度退化手法)

2.数仓表命名规范

3.拉链表的使用场景

4.一亿条数据查的很慢,怎么查快一点

5.有什么维表

6.数据源都有哪些

7.你们最大的表是什么表,数据量多少

8.数仓架构体系

9.数据平台是怎样的,用到了阿里的那一套吗?

10.你了解的调度系统有那些?,你们公司用的是哪种调度系统

11.你们公司数仓底层是怎么抽数据的?

12.为什么datax抽数据要比sqoop 快?

13.埋点数据你们是怎样接入的

14.如果你们业务库的表有更新,你们数仓怎么处理的?

15.能独立搭建数仓吗

16.搭建过CDH 集群吗

17.说一下你们公司的大数据平台架构?你有参与吗?

18.介绍一下你自己的项目和所用的技术

19.对目前的流和批处理的认识?就是谈谈自己的感受

20.你了解那些OLAP 引擎,MPP 知道一些吗?clickHouse 了解一些吗?你自己做过测试性能吗?

21.Kylin 有了解吗?介绍一下原理

22.datax 源码有改造过吗

23.你们数仓的APP 层是怎么对外提供服务的?

24.数据接入进来,你们是怎样规划的,有考虑数据的膨胀问题吗

25.简述拉链表,流水表以及快照表的含义和特点

26.全量表(df),增量表(di),追加表(da),拉链表(dz)的区别及使用场景

27.你们公司的数仓分层,每一层是怎么处理数据的

28.什么是事实表,什么是维表

29.星型模型和雪花模型

30.缓慢变化维如何处理,几种方式

31.datax与sqoop的优缺点

32.datax抽数碰到emoji表情怎么解决

33.工作中碰到什么困难,怎么解决的

34.如何用数据给公司带来收益

35.需求驱动和业务驱动,数据开发和ETL开发,实战型和博客型

36.如何用数据实现业务增长,黑客增长?

37.什么是大数据?千万级别的数据完全可以用传统的关系型数据库集群解决,为什么要用到大数据平台。

38.数据质量,元数据管理,指标体系建设,数据驱动

39.什么是数仓,建设数仓时碰到过什么问题

40.实时数仓技术选型及保证exactly-once

41.维度建模和范式建模的区别;

42.埋点的码表如何设计;

43.集市层和公共层的区别;

44.缓慢变化维的处理方式

45.聊聊数据质量

46.说说你从0-1搭建数仓都做了什么?你觉得最有挑战的是什么?

七.Flink

1.Flink实时计算时落磁盘吗

2.日活DAU的统计需要注意什么

3.Flink调优

4.Flink的容错是怎么做的

5.Parquet格式的好处?什么时候读的快什么时候读的慢

6.flink中checkPoint为什么状态有保存在内存中这样的机制?为什么要开启checkPoint?

7.flink保证Exactly_Once的原理?

8.flink的时间形式和窗口形式有几种?有什么区别,你们用在什么场景下的?

9.flink的背压说下?

10.flink的watermark机制说下,以及怎么解决数据乱序的问题?

11.flink on yarn执行流程

12.说一说spark 和flink 的区别 

八.Java

1.hashMap底层源码,数据结构

2.写出你用过的设计模式,并举例说明解决的实际问题

3.Java创建线程的几种方式

4.请简述操作系统的线程和进程的区别

5.Java程序出现OutOfMemoryError:unable to create new native thread 的原因可能有哪些?如何分析和解决?

6.采用java或自己熟悉的任何语言分别实现简单版本的线性表和链表,只需实现add,remove方法即可

7.ArrayList和LinkedList的区别

8.JVM 内存分哪几个区,每个区的作用是什么?

9.Java中迭代器和集合的区别?

10.HashMap 和 HashTable 区别

11.线程池使用注意哪些方面?

12.HashMap和TreeMap的区别?TreeMap排序规则?

13.用java实现单例模式

14.使用递归算法求n的阶乘:n! ,语言不限

15.HashMap和Hashtable的区别是什么

16.TreeSet 和 HashSet 区别

17.Stringbuffer 和 Stringbuild 区别

18.Final、Finally、Finalize

19..==和 Equals 区别

20.比较ArrayList,LinkedList的存储特性和读写性能

21.Java 类加载过程

22.java中垃圾收集的方法有哪些?

23.如何判断一个对象是否存活?(或者GC对象的判定方法)

24.jvm、堆栈

九.Elasticsearch

1.为什么要用es?存进es的数据是什么格式的,怎么查询

十.Flume

1.什么是flume

2.flume运行机制

3.Flume采集数据到Kafka中丢数据怎么办

4.Flume怎么进行监控?

5.Flume的三层架构,collector、agent、storage

十一.Sqoop

1.Sqoop底层运行的任务是什么

2.sqoop的迁移数据的原理

3.Sqoop参数

4.Sqoop导入导出Null存储一致性问题

5.Sqoop数据导出一致性问题

十二.Redis

1.缓存穿透、缓存雪崩、缓存击穿

2.数据类型

3.持久化

4.悲观锁和乐观锁

5.redis 是单线程的,为什么那么快

6.redis的热键问题?怎么解决?

十三.Mysql

1.请写出mysql登录命令,用户名user,密码123456,地址192.168.1.130

2.为什么MySQL的索引要使用B+树而不是其它树形结构?比如B树?

十四.数据结构与算法

1.二分查找

2.快排

3.归并排序

4.冒泡排序

5.字符串反转

6.Btree简单讲一下

7.动态规划 最大连续子序列和

8.二叉树概念,特点及代码实现

9.链表

十五.Linux


一.Hadoop

1.hdfs写流程

 

  1. 客户端跟namenode通信请求上传文件,namenode检查目标文件是否已存在,父目录是否存在

  2. namenode返回是否可以上传

  3. client请求第一个 block该传输到哪些datanode服务器上

  4. namenode返回3个datanode服务器ABC

  5. client请求3台dn中的一台A上传数据(本质上是一个RPC调用,建立pipeline),A收到请求会继续调用B,然后B调用C,将真个pipeline建立完成,逐级返回客户端

  6. client开始往A上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,A收到一个packet就会传给B,B传给C;A每传一个packet会放入一个应答队列等待应答

  7. 当一个block传输完成之后,client再次请求namenode上传第二个block的服务器。

2.hdfs读流程

 

  1. client跟namenode通信查询元数据,找到文件块所在的datanode服务器

  2. 挑选一台datanode(就近原则,然后随机)服务器,请求建立socket流

  3. datanode开始发送数据(从磁盘里面读取数据放入流,以packet为单位来做校验)

  4. 客户端以packet为单位接收,现在本地缓存,然后写入目标文件

3.hdfs的体系结构

hdfs有namenode、secondraynamenode、datanode组成。为n+1模式

  1. NameNode负责管理和记录整个文件系统的元数据

  2. DataNode 负责管理用户的文件数据块,文件会按照固定的大小(blocksize)切成若干块后分布式存储在若干台datanode上,每一个文件块可以有多个副本,并存放在不同的datanode上,Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量

  3. HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行

  4. secondraynamenode负责合并日志

4.一个datanode 宕机,怎么一个流程恢复

Datanode宕机了后,如果是短暂的宕机,可以实现写好脚本监控,将它启动起来。如果是长时间宕机了,那么datanode上的数据应该已经被备份到其他机器了,那这台datanode就是一台新的datanode了,删除他的所有数据文件和状态文件,重新启动。

5.hadoop 的 namenode 宕机,怎么解决

先分析宕机后的损失,宕机后直接导致client无法访问,内存中的元数据丢失,但是硬盘中的元数据应该还存在,如果只是节点挂了,重启即可,如果是机器挂了,重启机器后看节点是否能重启,不能重启就要找到原因修复了。但是最终的解决方案应该是在设计集群的初期就考虑到这个问题,做namenode的HA。

6.namenode对元数据的管理

namenode对数据的管理采用了三种存储形式:

  • 内存元数据(NameSystem)

  • 磁盘元数据镜像文件(fsimage镜像)

  • 数据操作日志文件(可通过日志运算出元数据)(edit日志文件)

7.元数据的checkpoint

每隔一段时间,会由secondary namenode将namenode上积累的所有edits和一个最新的fsimage下载到本地,并加载到内存进行merge(这个过程称为checkpoint)

 

namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据

8.yarn资源调度流程 

 

  1. 用户向YARN 中提交应用程序, 其中包括ApplicationMaster 程序、启动ApplicationMaster 的命令、用户程序等。

  2. ResourceManager 为该应用程序分配第一个Container, 并与对应的NodeManager 通信,要求它在这个Container 中启动应用程序的ApplicationMaster。

  3. ApplicationMaster 首先向ResourceManager 注册, 这样用户可以直接通过ResourceManage 查看应用程序的运行状态,然后它将为各个任务申请资源,并监控它的运行状态,直到运行结束,即重复步骤4~7。

  4. ApplicationMaster 采用轮询的方式通过RPC 协议向ResourceManager 申请和领取资源。

  5.  一旦ApplicationMaster 申请到资源后,便与对应的NodeManager 通信,要求它启动任务。

  6. NodeManager 为任务设置好运行环境(包括环境变量、JAR 包、二进制程序等)后,将任务启动命令写到一个脚本中,并通过运行该脚本启动任务。

  7. 各个任务通过某个RPC 协议向ApplicationMaster 汇报自己的状态和进度,以让ApplicationMaster 随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务。在应用程序运行过程中,用户可随时通过RPC 向ApplicationMaster 查询应用程序的当前运行状态。

  8.  应用程序运行完成后,ApplicationMaster 向ResourceManager 注销并关闭自己。

9.hadoop中combiner和partition的作用

  • combiner是发生在map的最后一个阶段,父类就是Reducer,意义就是对每一个maptask的输出进行局部汇总,以减小网络传输量,缓解网络传输瓶颈,提高reducer的执行效率。

  • partition的主要作用将map阶段产生的所有kv对分配给不同的reducer task处理,可以将reduce阶段的处理负载进行分摊

10.用mapreduce怎么处理数据倾斜问题?

数据倾斜:map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完,此称之为数据倾斜。

(1)局部聚合加全局聚合。

第一次在 map 阶段对那些导致了数据倾斜的 key 加上 1 到 n 的随机前缀,这样本来相

同的 key 也会被分到多个 Reducer 中进行局部聚合,数量就会大大降低。

第二次 mapreduce,去掉 key 的随机前缀,进行全局聚合。

思想:二次 mr,第一次将 key 随机散列到不同 reducer 进行处理达到负载均衡目的。第

二次再根据去掉 key 的随机前缀,按原 key 进行 reduce 处理。

这个方法进行两次 mapreduce,性能稍差。

(2)增加 Reducer,提升并行度

JobConf.setNumReduceTasks(int)

(3)实现自定义分区

根据数据分布情况,自定义散列函数,将 key 均匀分配到不同 Reducer

11.shuffle 阶段,你怎么理解的

 

shuffle: 洗牌、发牌——(核心机制:缓存,数据分区,排序,Merge进行局部value的合并);

具体来说:就是将maptask输出的处理结果数据,分发给reducetask,并在分发的过程中,对数据按key进行了分区和排序;

1)Map 方法之后 Reduce 方法之前这段处理过程叫 Shuffle

2)Map 方法之后,数据首先进入到分区方法,把数据标记好分区,然后把数据发送到 环形缓冲区;环形缓冲区默认大小 100m,环形缓冲区达到 80%时,进行溢写;溢写前对数 据进行排序,排序按照对 key 的索引进行字典顺序排序,排序的手段快排;溢写产生大量溢 写文件,需要对溢写文件进行归并排序;对溢写的文件也可以进行 Combiner 操作,前提是汇总操作,求平均值不行。最后将文件按照分区存储到磁盘,等待 Reduce 端拉取。

3)每个 Reduce 拉取 Map 端对应分区的数据。拉取数据后先存储到内存中,内存不够 了,再存储到磁盘。拉取完所有数据后,采用归并排序将内存和磁盘中的数据都进行排序。

在进入 Reduce 方法前,可以对数据进行分组操作。

12.Mapreduce 的 map 数量 和 reduce 数量是由什么决定的 ,怎么配置

map的数量由输入切片的数量决定,128M切分一个切片,只要是文件也分为一个切片,有多少个切片就有多少个map Task。

reduce数量自己配置。

13.MapReduce优化经验

  1.  设置合理的map和reduce的个数。合理设置blocksize

  2. 避免出现数据倾斜

  3. combine函数

  4. 对数据进行压缩

  5. 小文件处理优化:事先合并成大文件,combineTextInputformat,在hdfs上用mapreduce将小文件合并成SequenceFile大文件(key:文件名,value:文件内容)

  6. 参数优化

14.分别举例什么情况要使用 combiner,什么情况不使用?

求平均数的时候就不需要用combiner,因为不会减少reduce执行数量。在其他的时候,可以依据情况,使用combiner,来减少map的输出数量,减少拷贝到reduce的文件,从而减轻reduce的压力,节省网络开销,提升执行效率

15.MR运行流程解析

 

  1. 一个mr程序启动的时候,最先启动的是MRAppMaster,MRAppMaster启动后根据本次job的描述信息,计算出需要的maptask实例数量,然后向集群申请机器启动相应数量的maptask进程

  2. maptask进程启动之后,根据给定的数据切片范围进行数据处理,主体流程为:

    1. 利用客户指定的inputformat来获取RecordReader读取数据,形成输入KV对

    2. 将输入KV对传递给客户定义的map()方法,做逻辑运算,并将map()方法输出的KV对收集到缓存

    3. 将缓存中的KV对按照K分区排序后不断溢写到磁盘文件

  3. MRAppMaster监控到所有maptask进程任务完成之后,会根据客户指定的参数启动相应数量的reducetask进程,并告知reducetask进程要处理的数据范围(数据分区)

  4. Reducetask进程启动之后,根据MRAppMaster告知的待处理数据所在位置,从若干台maptask运行所在机器上获取到若干个maptask输出结果文件,并在本地进行重新归并排序,然后按照相同key的KV为一个组,调用客户定义的reduce()方法进行逻辑运算,并收集运算输出的结果KV,然后调用客户指定的outputformat将结果数据输出到外部存储

16.简单描述一下HDFS的系统架构,怎么保证数据安全?

 

HDFS数据安全性如何保证?

  1. 存储在HDFS系统上的文件,会分割成128M大小的block存储在不同的节点上,block的副本数默认3份,也可配置成更多份;

  2. 第一个副本一般放置在与client(客户端)所在的同一节点上(若客户端无datanode,则随机放),第二个副本放置到与第一个副本同一机架的不同节点,第三个副本放到不同机架的datanode节点,当取用时遵循就近原则;

  3. datanode已block为单位,每3s报告心跳状态,做10min内不报告心跳状态则namenode认为block已死掉,namonode会把其上面的数据备份到其他一个datanode节点上,保证数据的副本数量;

  4. datanode会默认

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值