X星球居民小区的楼房全是一样的,并且按矩阵样式排列。
其楼房的编号为 1,2,3…1,2,3…
当排满一行时,从下一行相邻的楼往反方向排号。
比如:当小区排号宽度为 66 时,开始情形如下:
1 2 3 4 5 6
12 11 10 9 8 7
13 14 15 .....
我们的问题是:已知了两个楼号 mm 和 nn,需要求出它们之间的最短移动距离(不能斜线方向移动)。
输入格式
输入共一行,包含三个整数 w,m,nw,m,n,ww 为排号宽度,m,nm,n 为待计算的楼号。
输出格式
输出一个整数,表示 m,nm,n 两楼间最短移动距离。
数据范围
1≤w,m,n≤100001≤w,m,n≤10000,
输入样例:
6 8 2
输出样例:
4
import java.util.*;
public class Main{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int w = sc.nextInt();
int m = sc.nextInt();
int n = sc.nextInt();
int x1 = 0,y1 = 0;
//求 出行的位置
if(m % w == 0) {
x1 = m / w;
}else {
x1 = m / w + 1;
}
//求出列的位置
if((x1 & 1) == 1) {
if(m % w == 0) {
y1 = w;
}else {
y1 = m % w;
}
}else {
if(m % w == 0) {
y1 = 1;
}else {
y1 = w - m % w + 1;
}
}
int x2 = 0,y2 = 0;
//求 出行的位置
if(n % w == 0) {
x2 = n / w;
}else {
x2 = n / w + 1;
}
//求出列的位置
if((x2 & 1) == 1) {
if(n % w == 0) {
y2 = w;
}else {
y2 = n % w;
}
}else {
if(n % w == 0) {
y2 = 1;
}else {
y2 = w - n % w + 1;
}
}
System.out.println(Math.abs(x1 - x2) + Math.abs(y1 - y2));
}
}