【Python】求数组局部最大值

这篇博客介绍了如何使用Python高效地寻找数组中的局部最大值。通过算法描述和代码实现,展示了利用二分查找法在O(logN)的时间复杂度内找到局部最大值的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求数组局部最大值

给定一个无重复元素的数组A[0…N-1],求找到一个该数组的局部最大值。规定:在数组边界外的值无穷小。即:A[0]>A[-1],A[N-1] >A[N]。
显然,遍历一遍可以找到全局最大值,而全局最大值显然是局部最大值。
可否有更快的办法?

算法描述

使用索引left、right分别指向数组首尾。
求中点 mid = ( left + right ) / 2
A[mid]>A[mid+1],丢弃后半段:right=mid
A[mid+1]>A[mid],丢弃前半段:left=mid+1
递归直至left==right
时间复杂度为O(logN)。

Python代码

def local_maximum(li):
    if li is None:
        return
    left = 0
    right = len(li) - 1
    while 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值