- 博客(14)
- 资源 (1)
- 收藏
- 关注
原创 numpy笔记
np.vectorize np.vectorize( pyfunc, otypes=None, doc=None, excluded=None, cache=False, signature=None, ) 定义一个向量化函数,它接受嵌套的对象序列或numpy数组作为输入,并返回单个numpy数组或numpy数组的元组。向量化函数像python map函数一样对输入数组的连续元组求值' pyfunc ',不同的是它使用numpy的广播规则。 Parameters: pyfunc : calla
2021-01-15 17:26:41
146
原创 sklearn笔记
TfidfVectorizer tf=w在该文档中出现次数/该文档总词数tf = w在该文档中出现次数 / 该文档总词数tf=w在该文档中出现次数/该文档总词数 idf=log总文档数1+包含w的文档数idf = \log \frac{总文档数}{1+包含w的文档数}idf=log1+包含w的文档数总文档数 tf−idf=tf∗idftf-idf = tf * idftf−idf=tf∗idf sklearn.feature_extraction.text.TfidfVectorizer( input
2021-01-15 17:23:17
185
原创 2020-09-12
text-cnn import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class TextCNN(nn.Module): def __init__(self, vocab, output_channel, n_classes): super(TextCNN, self).__init__()
2020-09-12 22:59:44
246
原创 机器学习算法笔记(有的带sklearn api的简易实现)[``]()
手写机器学习算法简易版数据准备PerceptronCodeTestKNNCodeTestNBCodeTestDT 数据准备 import pandas as pd import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from collections import Counter
2020-09-04 11:42:21
546
原创 transformer.config/tokenizer/model
transformers 框架主要有三个类model 类、configuration 类、tokenizer 类,这三个类,所有相关的类都衍生自这三个类,他们都有 from_pretained() 方法和 save_pretrained() 方法。 Config类 PretrainedConfig 是其它所有 Config类 的基类,它实现了用于从本地文件或目录或库提供的预训练模型配置(从HuggingFace的AWS S3存储库下载)中加载/保存配置的常用方法。 Signature class trans
2020-08-15 18:50:18
7282
4
翻译 xgboost lib
文章目录xgboost pkg introductionData InterfaceSetting ParametersTrainingEarly StoppingPredictionPlottingxgboost API referenceCore Data StructureLearning APIScikit-Learn API xgboost pkg introduction Data Interface xgboost 支持的格式有: LibSVM text format file Comma-
2020-08-05 22:38:50
316
原创 gensim笔记
core concepts Document: 文档,一个字符串。 Corpus: 语料库,文档的集合。 Vector: 向量,文档的数学表示方式。 Model: 将向量从一种表示转换为另一种表示的算法。 Document document 是文本序列类型,在python中就是 str 。document 可以是一个句子,一篇文章,甚至是一本书的内容。 document = "Human machine interface for lab abc computer applications" Corp
2020-07-30 22:00:50
1273
原创 fasttext 使用笔记
安装 !pip install fasttext 学习词向量 # Skipgram model : model = fasttext.train_unsupervised('data.txt', model='skipgram') # or, cbow model : model = fasttext.train_unsupervised('data.txt', model='cbow') 其中 data.txt 是 utf-8 编码的文本文件。 fasttext.train_unsupervised
2020-07-28 23:52:37
1124
原创 pandas-cheat-sheet
这里写自定义目录标题数据结构Series创建属性取值取一个值取Series(切片,注意 loc 和 iloc 的区别)方法DataFrame创建与添加列属性取值取DataFrame(魔法切片,注意 loc 和 iloc 的区别)取Series(切片,注意 loc 和 iloc 的区别)取值修改行名或列名(Series通用)删除依类型选择列常用函数 数据结构 Series 创建 >>> s = pd.Series(data=list('一二三四五'), index=list('abcde')
2020-07-23 20:49:46
990
原创 常用正则表达式查询
常用正则表达式 校验数字的表达式 数字:^\d*$ n位的数字:^\d{n}$ 至少n位的数字:^\d{n,}$ m-n位的数字:^\d{m,n}$ 零和非零开头的数字:^(0|[1-9][0-9]*)$ 非零开头的最多带两位小数的数字:^([1-9][0-9]*)+(\.[0-9]{1,2})?$ 带1-2位小数的正数或负数:^(\-)?\d+(\.\d{1,2})$ 正数、负数、和小数:^(\...
2020-07-23 20:49:17
330
原创 几种优化算法的个人理解
几种优化算法的个人理解SGD动量法指数加权移动平均Momentum SGD 一般指 Batch Gradient Descent。 有时会出现的一个问题:某方向太快,某方向太慢, 如图 甚至,学习率稍微大一点就发散的问题 动量法 动量法是怎么解决的呢?动量法从指数加权移动平均中获得灵感。 指数加权移动平均 exponentially weighted moving average, 给定超参数 0≤γ<100≤\gamma<100≤γ<10 ,当前时间步 ttt 的变量 yty_tyt
2020-07-06 13:13:01
1199
原创 深度学习环境配置
conda基础 添加环境变量 D:\dev\Miniconda3 D:\dev\Miniconda3\Scripts D:\dev\Miniconda3\Library\bin 配置国内源 先运行指令 conda config --set show_channel_urls yes 然后在用户目录下找到 <.condarc>, 改成 channels: - https://mir...
2020-03-06 18:46:44
269
原创 python基础数据结构
注:s 和 t 是具有相同类型的序列,n, i, j 和 k 是整数而 x 是任何满足 s 所规定的类型和值限制的任意对象。 通用序列操作 list, tuple, range, str x in s x not in s s + t s * n 或 n * s # range 没有此操作 s[i] s[i:j] s[i:j:k] len(s) min(s) max(s) s.index(x[, ...
2020-03-06 18:44:44
154
原创 C++ STL 速查
vector 顺序容器 迭代器 begin end rbegin rend cbegin cend crbegin crend size() empty() operator[] front() 返回元素,不是迭代器 back() push_back(v) 无返回值 pop_back() 无返回值 insert (pos,[ n,] v),(...
2020-03-06 18:38:04
808
1
cmder.zip 内含 git-for-windows
2020-03-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人