「算法笔记」莫比乌斯反演进阶

YY 的 GCD

题目大意

求下列式子的值:

∑ i = 1 n ∑ j = 1 m [ gcd ⁡ { i , j } ∈ P ]   ( P  为素数集合 ) \sum_{i = 1}^{n} \sum_{j = 1}^{m} [\gcd\{i, j\} \in P]\ (P\ \text{为素数集合}) i=1nj=1m[gcd{ i,j}P] (P 为素数集合)

1 0 4 10^4 104 组询问, n , m ≤ 1 0 7 n, m \le 10^7 n,m107

思路分析

将原式变形:


∑ p ∈ P ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ m p ⌋ [ gcd ⁡ { i , j } = 1 ] \sum_{p \in P} \sum_{i = 1}^{\lfloor \frac{n}{p} \rfloor} \sum_{j = 1}^{\lfloor \frac{m}{p} \rfloor} [\gcd\{i, j\} = 1] pPi=1pnj=1pm[gcd{ i,j}=1]

∑ p ∈ P ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ m p ⌋ ∑ d ∣ i , d ∣ j μ ( d ) \sum_{p \in P} \sum_{i = 1}^{\lfloor \frac{n}{p} \rfloor} \sum_{j = 1}^{\lfloor \frac{m}{p} \rfloor} \sum_{d | i, d | j} \mu(d) pPi=1pnj=1pmdi,djμ(d)

∑ p ∈ P ∑ d = 1 min ⁡ { ⌊ n p ⌋ , ⌊ n p ⌋ } μ ( d ) ∑ i = 1 ⌊ n p d ⌋ ∑ j = 1 ⌊ m p d ⌋ 1 \sum_{p \in P} \sum_{d = 1}^{\min\{\lfloor \frac{n}{p} \rfloor, \lfloor \frac{n}{p} \rfloor\}} \mu(d) \sum_{i = 1}^{\lfloor \frac{n}{pd} \rfloor} \sum_{j = 1}^{\lfloor \frac{m}{pd} \rfloor} 1 pPd=1min{ pn,pn}μ(d)i=1pdnj=1pdm1

∑ p ∈ P ∑ d = 1 min ⁡ { ⌊ n p ⌋ , ⌊ n p ⌋ } μ ( d ) ⌊ n p d ⌋ ⌊ m p d ⌋ \sum_{p \in P} \sum_{d = 1}^{\min\{\lfloor \frac{n}{p} \rfloor, \lfloor \frac{n}{p} \rfloor\}} \mu(d) \lfloor \frac{n}{pd} \rfloor \lfloor \frac{m}{pd} \rfloor

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值