YY 的 GCD
题目大意
求下列式子的值:
∑ i = 1 n ∑ j = 1 m [ gcd { i , j } ∈ P ] ( P 为素数集合 ) \sum_{i = 1}^{n} \sum_{j = 1}^{m} [\gcd\{i, j\} \in P]\ (P\ \text{为素数集合}) i=1∑nj=1∑m[gcd{ i,j}∈P] (P 为素数集合)
1 0 4 10^4 104 组询问, n , m ≤ 1 0 7 n, m \le 10^7 n,m≤107。
思路分析
将原式变形:
∑ p ∈ P ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ m p ⌋ [ gcd { i , j } = 1 ] \sum_{p \in P} \sum_{i = 1}^{\lfloor \frac{n}{p} \rfloor} \sum_{j = 1}^{\lfloor \frac{m}{p} \rfloor} [\gcd\{i, j\} = 1] p∈P∑i=1∑⌊pn⌋j=1∑⌊pm⌋[gcd{ i,j}=1]
∑ p ∈ P ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ m p ⌋ ∑ d ∣ i , d ∣ j μ ( d ) \sum_{p \in P} \sum_{i = 1}^{\lfloor \frac{n}{p} \rfloor} \sum_{j = 1}^{\lfloor \frac{m}{p} \rfloor} \sum_{d | i, d | j} \mu(d) p∈P∑i=1∑⌊pn⌋j=1∑⌊pm⌋d∣i,d∣j∑μ(d)
∑ p ∈ P ∑ d = 1 min { ⌊ n p ⌋ , ⌊ n p ⌋ } μ ( d ) ∑ i = 1 ⌊ n p d ⌋ ∑ j = 1 ⌊ m p d ⌋ 1 \sum_{p \in P} \sum_{d = 1}^{\min\{\lfloor \frac{n}{p} \rfloor, \lfloor \frac{n}{p} \rfloor\}} \mu(d) \sum_{i = 1}^{\lfloor \frac{n}{pd} \rfloor} \sum_{j = 1}^{\lfloor \frac{m}{pd} \rfloor} 1 p∈P∑d=1∑min{ ⌊pn⌋,⌊pn⌋}μ(d)i=1∑⌊pdn⌋j=1∑⌊pdm⌋1
∑ p ∈ P ∑ d = 1 min { ⌊ n p ⌋ , ⌊ n p ⌋ } μ ( d ) ⌊ n p d ⌋ ⌊ m p d ⌋ \sum_{p \in P} \sum_{d = 1}^{\min\{\lfloor \frac{n}{p} \rfloor, \lfloor \frac{n}{p} \rfloor\}} \mu(d) \lfloor \frac{n}{pd} \rfloor \lfloor \frac{m}{pd} \rfloor