双亲委派模型+线程上下文类加载器

本文探讨了Java类加载器的双亲委派模型及其三大优势:确保核心库类型安全,防止核心类被替代,以及创建额外的命名空间。通过启动类加载器统一加载核心库,实现类的兼容性和隔离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

类加载器的双亲委派模型的好处:

1. 可以确保Java核心库的类型安全:所有的Java应用都至少会应用java.lang.Object类,也就是说再运行期,java.lang。Object这个类会被加载到Java虚拟机中;如果这个加载过程是由Java应用自己的类加载器所完成的,那么很可能就会再JVM中存在多个版本的java.lang.Object类,而且这些类之间还是不兼容的,相互不可见的。

借助于双亲委派模型,Java核心库中的类的加载工作都是由启动类加载器来统一完成,从而确保了Java应用所使用的都是同一个版本的Java核心类库,他们之间是相互兼容的。

2. 可以确保Java核心类库所提供的类不会被自定义的类所替代。

3. 不同的类加载器可以为相同名称(binary name)的类创建额外的命名空间。相同名称的类可以并存在Java虚拟机中,只需要用不同的类加载器来加载他们即可。不同类加载器所加载之间是不兼容的,这就相当于在Java虚拟机内部创建了一个又一个相互隔离的Java类空间。

线程上下文类加载器:

资源下载链接为: https://pan.quark.cn/s/140386800631 通用大模型文本分类实践的基本原理是,借助大模型自身较强的理解和推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子和待分类文本。但实际应用中,类目和样本较多易导致prompt过长,影响大模型推理效果,因此可先通过向量检索缩小范围,再由大模型做最终决策。 具体方案为:离线时提前配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给大模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提高准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入大模型。 代码实现上,大模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入大模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不大;不使用ICL时accuracy为0.88,错误58项,可能与未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用大模型api打造工具;缺点是上限不高,仅针对一个分类任务部署大模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值