新提出的单阶段检测网络(工作后看论文的时间越来越少)
论文地址:https://arxiv.org/pdf/2008.13367.pdf
Github地址:https://github.com/hyz-xmaster/VarifocalNet
Abstract:
对大量的候选检测进行准确排序对于优异表现的目标检测器来说非常重要。然而之前的研究工作使用分类得分或者与IOU-based定位得分联合起来作为排序的依据,它们都不能可靠地表示排序,这会损害检测性能。本文中,我们提出去学习IOU感知的分类得分(IACS),可以同时表示物体的存在置信度和定位精度,以在密集的物体检测器中产生更准确的检测排序。特别是,我们设计了一个新的损失函数,称为Varifocal损失,用于训练密集的物体检测器来预测IACS,并设计了一种新的高效星形边界框特征表示,用于估算IACS和改进粗略边界框。 结合这两个新组件和边界框优化分支,我们在FCOS架构上构建了一个新的密集目标检测器,我们简称VarifocalNet或VFNet。 在MS COCO基准上进行的大量实验表明,我们的VFNet始终超过具有不同主干的强大的基准2.0 AP,并且我们的Res2Net-101-DCN最佳模型在COCO测试开发上达到了51.3的单模型单尺度AP,实现了 各种物体检测器中的最好表现。