网上关于这个问题的回答有很多,但大多不够全面而且具有跳跃性,需要很多篇综合起来才能解决问题,小白不容易看懂。而且好多都是针对自己的电脑而言,但实际情况是大家每个人的电脑配置可能千差万别,一个软件版本的不对应就可能导致最终的失败。我自己这两天踩过了很多坑,在此,我希望将自己积累的经验教训与大家分享。如果你对Tensorflow-gpu,CUDA,cuDNN,Anaconda,pycharm等名词毫无概念,看了很多安装指南仍然一片茫然,那么这篇相对而言比较全面的文章肯定能帮助你!!(本人也属于刚入门小白,如有一些地方解释不当或者错误,希望大家指出,也希望大家谅解,参考过的博客也都基本列举在了文中!)
主要内容:
- Win10(其它版本类似)下面的tensorflow-gpu安装详细步骤
- 每一步可能遇到的坑以及解决办法
- 对出现的一些软件进行简要解释以及提供学习途径
- Anaconda,pycharm的连接应用等
准备工作(主要是所需软件环境的搭建):
安装tensorflow gpu版本要比cpu版本更复杂,因为我们事先必须先为电脑装上CUDA 和cuDNN,而CUDA则是成败关键所在。
- Anaconda(可选,建议装来学一下)
- CUDA
- cuDNN
- tensorflow-gpu
各个软件的简要介绍(有兴趣则看,建议看):
Anaconda: Python的一款环境管理工具。详见(https://www.jianshu.com/p/eaee1fadc1e9)
CUDA 和CuDNN:详见(https://blog.csdn.net/u014380165/article/details/77340765)
关键步骤!!!
- 查询自己电脑的显卡型号:(如果不是英伟达的独显则不用往下看了,老老实实的用cpu吧);查看自己的显卡所对应的CUDA版本。方法详见:https://jingyan.baidu.com/article/6fb756ec4fabc4241858fbf7.html。譬如:我的显卡是NVIDIA GEFORCE 830M,对应CUDA8.0。
- 查询Tensorflow不同版本要求与CUDA及cuDNN版本对应关系。见:https://blog.csdn.net/omodao1/article/details/83241074
譬如,据上我确定了适合自己电脑的版本:CUDA8.0,cuDNN5.1,tensorflow-gpu==1.0.1
具体操作流程如下:
1. Anaconda下载安装以及Python环境配置:
(或许有人问不装Anaconda行不行?行!一点问题没有,如果闲麻烦,忽略这一步,直接到python官网去下载相应的python安装包,一路next,中途勿忘添加环境变量到路径!cmd检验一下即可!自行百度)
Anaconda下载地址:https://www.anaconda.com/download/ 选择自己系统的版本下载。但这里容易找到的是最新版本的Py37,但目前安装tensorflow GPU建议使用python3.5/6。所以有两种选择:
1) 将就这个下载,安装完毕后重新添加Python3.5的环境。具体操作很容易,见后文
2)另寻他路,忽略上面的下载网址,请自行百度所需要的Anaconda版本(如搜 索:Anaconda python3.5安装包)。耐心一点,总能找到免费的。
Anaconda安装很容易,没有什么需要特别注意的地方。关键在于在Anaconda里面如何搭建一个自己的python环境,譬如,我就是下载了最新版本的Anaconda py37,而我现在需要的是py35的工作环境,那么我该怎么办呢??这正好体现了Anaconda的强大之处。
- 打开Anaconda Navigator,点击Enviroments,点击creat,接下来按照提示操作即可!

构建完自己的环境,该如何使用呢?
打开自己电脑cmd,输入conda info --envs,如下图,可以看到里面有两个环境,一个base(自带的py3.7环境),另一个My_DeepLearing,也即为我自己创建的py3.5的环境.再输入activaten My_DeepLearing,即可进入Py3.5的工作环境。接下来的操作与在python环境下的操作完全一致。譬如,如果想安装numpy库,则pip install numpy,如图:

或许有人会问,pycharm和Anaconda什么关系,别急,文末会带大家将这二者联系起来!
到这一步,也就意味着Python环境搭好了!!!
2.CUDA下载以及安装(要命的一步,从下载开始就会一路是坑!!)
下载:百度搜索(CUDA xxx版本号下载)官网下载即可(是win几则按照提示选择即可,很简单,有问题的自行百度)!But,我打赌你多半会遇到每次辛辛苦苦下到百分之90则会自动下载失败。(泪奔!!! 迅雷?换浏览器换电脑??No!我甚至在我的Ubuntu系统上面下载这个玩意儿,然并卵!不如把我头换了)如我下载的win10 CUDA8.0(但我其实是百度云盘找的资源,在此感谢那位好心人)

解决办法:简单粗暴!!去网上找吧,总有好心人免费分享的百度网盘链接,Good luck!
如果没有怎么办,CSDN到处都是,只不过要积分,充钱?No!此时还有最后一个办法,万能某宝上面2元一次的代下!稳如 。
安装:较为easy!但是注意的是记住你的安装路径,因为后面要用,我第一次安装后打死都找不到安到哪了,只好重装。最好不要自己定义路径,要定义会较为麻烦,容易给自己挖坑,因为这货会自动改为默认。实在忘了试试这个:C:Program FilesNVIDIA GPU Computing ToolkitCUDA
Next添加环境变量:一般来说,如果你安装过程不搞什么骚操作,环境变量会自己自动添加。自己添加也较为简单,自行百度!
接下来安装cuDNN,这个很简单,注意要找好与自己的CUDA对应版本,例如我的CUDA8.0对应了cuDNN5.1.百度搜索到官网下载(需要注册账号,流程简单),解压后!!将得到的三个文件(bin,include,lib)复制到C:Program FilesNVIDIA GPU Computing ToolkitCUDA这个目录下面!!
此时CUDA和cuDNN配置完毕
好的,此时,你离成功还有一步之遥,如果不出意外的话!
3安装tensorflow-gpu(最后一步)
直接 pip install tensorflow-gpu
或则:pip install tensorflow-gpu==版本号(如:pip install tensorflow-gpu==1.0.1)
注意:你可能会遇到的问题:pip 超时
解决办法:
pip --default-timeout=100 install -U tensorflow-gpu
如果一切顺利!恭喜你,可以测试一下是否成功了。
验证是否成功:
打开cmd,如果是Anaconda下的环境,参照上文,进入python环境。如果不是,直接在终端输入python,在下面编写简单代码测试:

import tensorflow as tf
a=tf.constant(2)
sess=tf.Session()
print(sess.run(a))
若输出为2,则意味着成功。还可以看到自己的gpu信息如下图:

接下来,就可以开启tensorflow之旅了!
文末彩蛋:pycharm与Anaconda连接
前面和大家提到过,Anaconda 所创建的任意python环境其实都是可以被pycharm利用的,在pycharm里面新建工程,点击file,下拉菜单选择setting,然后在里面选择project,下拉里面选择project interpretor,然后add,


点击add!出现如下界面

点击上图右下角寻找自己的Anaconda所在目录,在Anaconda安装目录的envs文件夹下面找到自己建立的环境添加python.exe即可!!例如我的就如下图,依次点击则添加完成,下图的My_DeepLearing是我建立的python3.5环境。

这时,就可以让pycharm来使用我们在Anaconda下所建立的环境了!!