acwing-a^b

题目

https://www.acwing.com/problem/content/description/91/

思路

  • 重要公式:
    (a+b)%p=[(a%p)+(b%p)]%p(a∗b)%p=[(a%p)∗(b%p)]%p (a + b) \% p = [(a \% p) + (b \% p)] \% p \\ (a * b) \% p = [(a \% p) * (b \% p)] \% p (a+b)%p=[(a%p)+(b%p)]%p(ab)%p=[(a%p)(b%p)]%p

  • 证明
    ab%p把b表示成2进制数,b=2x1+2x2+……;ab=a2x1∗a2x2∗……;ab%p=(a2x1∗a2x2∗……)%p=[(a2x1%p)∗(a2x2%p)∗……]%p; a^b\%p \\ 把b表示成2进制数,b = 2^{x_1}+2^{x_2}+……; \\ a^b = a^{2^{x_1}}*a^{2^{x_2}}*……; \\ a^b\%p = (a^{2^{x_1}}*a^{2^{x_2}}*……)\%p = [(a^{2^{x_1}}\%p)*(a^{2^{x_2}}\%p)*……]\%p; ab%pb2b=2x1+2x2+;ab=a2x1a2x2;ab%p=(a2x1a2x2)%p=[(a2x1%p)(a2x2%p)]%p;

  • 快速幂模板

    //a^b
    int res = 1;
    while(b)
    {
        if(b&1) res = res*a;
        a = a*a;
        b >>= 1;
    }
    

AC代码

#include <iostream>

using namespace std;

int main(){
    int a,b, p;
    cin >> a >> b >> p;
    int res = 1%p;
    while (b){
        
        if (b & 1) res = (long long)res * a % p;
        b >>=1;
        a = (long long)a * a %p;//这里取模由上述公式证明可得
    }
    cout <<res ;
    return 0;
    
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值