awgn信道中的噪声功率谱密度_噪声(Noise)-2

596375eef8a7bab3ecb0fa4360ebdde0.png

​噪声(二)

上一篇内容噪声(Noise)-1分享了:

  • 噪声的功率谱密度

  -物理意义

  • 噪声的分类

  -白噪声

  -闪烁噪声

  -热噪声

  • MOS噪声的优化思路

  -沟道热噪声优化

  -栅热噪声优化

这一篇小记如何将噪声带入到具体电路中计算

1“相关噪声”与“非相关噪声”

在对电路进行分析时,常需要综合考虑多个噪声源,并考虑如何把他们叠加起来,得到等效的总噪声。至于如何叠加,涉及到“相关噪声”、“非相关噪声”。

01 - 相关噪声

相关噪声,X1(t)和X2(t)的叠加,例如电阻的噪声和MOS的噪声

f901d72d8fb2459f2d592f2c4e6f3f2c.png

02 - 非相关噪声

非相关噪声,X1(t)和X2(t)的叠加

082e6e249c16b137a1708f32af1d3d87.png

对比上面两个式子,相关噪声多出的噪声项是:

cd602b115a11c96591f5408fa4cd2533.png

如下图(a)是非相关噪声的叠加结果,图(b)是相关噪声的叠加结果。

电路设计中,大多数噪声是非相关的

9592723471c4976cdcca51484a5f3338.png

图1.8 (a)非相关噪声(b)相关噪声叠加

2信噪比(SNR)

如下图,输入的信号被放大器放大,输出的信号要远大于噪声信号,才有意义。

bb54f2425d2d4a01e9fa1f8d84a36669.png

信噪比(Signal-to-Noise Ratio)定义为:

bbf1bcb921a45dba4c1cef2254c97246.png

显然: 如果带宽过大,噪声的平均功率会变大, 这是不是就存在噪声和带宽之间的权衡:

0f02ab7aa090b28416b38810028d1743.png

3等效噪声源

01 -电阻热噪声电压源等效

电阻的热噪声计算: 无热噪声的理想电阻+热噪声源

ccc3e589a9d36bb8019d64933ea66ea8.png

其中:

c345c4b0db4d834a5564a4a03264c745.png

例子: 求:50Ω电阻、300k环境温度下、电阻的热噪声功率谱密度。

6c7bc45776e58077cd19d7ad1c6e79db.png

物理意义是50Ω的电阻在1Hz带宽的功率分量是(0.9*10^-9)^2,幅值是(0.9*10^-9)V。

02 - 电阻热噪声电流源等效

如图,等效并联噪声的电流源:

826d54fe9e89fcf9264adc98e9fc569d.png

"电流的功率谱密度"可以表示成, 单位是A^2/Hz:

b0b01aeeced2b2968a42a54818e592b1.png

03 - MOS沟道热噪声等效

沟道热噪声: 理想MOS管+噪声电流源

522008c60dd70bb7d18ecc4f74be35cf.png

电流源:

4ea67d3aed26d35165301dae4c9bfb2d.png

例子: 计算图中的MOS能产生最大的输出噪声功率谱密度:

608bd66e8ae2323e1bedc1ce6bf93ccb.png

输出噪声幅值:

2a2242a99b45cdf32eb2dc40b8939e0c.png

那输出噪声的PSD:

6e7305ba49f80922887f5019bdc9414e.png

04 -等效汇总举例

输出噪声:

如下图,计算输出噪声

ad37f1fa7006e8dd91f7d90ea74dcc3f.png

输出噪声PSD等于:

a95c076e26956035564ce983a7cf7bdd.png

也就是:

9768fc9547ab805b661c92391a1cfa70.png

4如何比较不同噪声对系统的影响大小

等效到系统输入端:

f9fd874bbce0ce8bf94c8a63fd73f172.png

c76154fda0a8448829d9bc22d23c45b4.png

下面这一段是比较重要的举例:

通过计算两种bandgap结构,来看各个部分的噪声是如何等效到输入端的:

bandgap结构一

d2c69ad299afcef7d042637ff605df1c.png

87caec29ab0add5a6058a471ea74f520.png

bandgap结构二

31cc023a43ecbd04105bcc9356d591eb.png

f3ed02802b6888846c8a02c146ed127f.png

顺着计算的思路我们可以得到一个非常重要的结论:

在运放中,越靠前一级的噪声,对系统的影响越大;越靠后一级的噪声对系统影响越小.

不信?去看看上面的各部分等效思路,还不信?你回忆一下往期内容<PSRR笔记-常见运放结构的PSRR>

WX公号:Analog CMOS

本文引用的图片多来自于:

<Design of Analog CMOS Integrated Circuits 2ed Raz>

<CMOS低压差线性稳压器>

### AWGN信道噪声方差的概念及计算 在AWGN(Additive White Gaussian Noise信道中,噪声被建模为具有零均值的高斯分布随机过程。这种噪声的特点是在任何时间点上的取值都服从正态分布,并且不同时间点之间的噪声样本相互独立[^1]。 对于AWGN信道而言,噪声方差是一个重要的参数,它决定了信号传输过程中引入了多少不确定性或失真程度。具体来说,在离散时间系统里,如果我们将接收到的信号表示为 \( r[n]=s[n]+w[n] \),其中\( s[n] \) 是发送端发出的理想无噪信号序列而 \( w[n]\sim\mathcal{N}(0,\sigma^2_w)\) 表示加性的白色高斯噪声,则这里的 \( \sigma^2_w\) 就是指噪声的方差[^2]。 为了更精确地定义这个概念,可以利用功率谱密度来描述连续时间和频率范围内的平均能量分布情况。当提到单边带宽BHz时,单位赫兹内对应的噪声功率通常写作 N_0/2 W/Hz ,因此整个带宽 B Hz 上总的噪声功率就是 \( P_n=B*N_0=2*B*\frac{\sigma^2}{2}=B*\sigma^2 \)[^2]。这里需要注意的是,由于我们讨论的是双边带的情况,所以实际上每一边只贡献了一半的能量给总噪声水平;这也是为什么会出现除以二的操作的原因之一。 最后,通过上述分析可知,在MATLAB或其他编程环境中模拟AWGN信道并加入适当强度的噪声可以通过调整 `awgn` 函数中的 SNR 参数间接控制最终产生的噪声方差大小。例如: ```matlab % 设定EbNo值, 即比特能量与噪声功率谱密度之比 ebno_db = 7; % dB形式给出 snr_linear = ebno2snr(ebno_db); % 添加AWGN到原始数据y上 rx_signal = awgn(y, snr_linear,'measured'); ``` 在这个例子中,`ebno2snr()` 和 `awgn()` 都是内置函数,前者用来转换 Eb/N0 到相应的SNR数值,后者则负责向输入信号 y 中注入指定信噪比条件下的白噪音实例化版本 rx_signal 。值得注意的是,具体的实现细节可能会因为不同的应用场景有所变化,比如是否采用线性调制方式等因素都会影响到最后所使用的公式表达式[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值