LM Studio本地安装部署deepseek模型,超简单

LM Studio 是一个用于本地运行大型语言模型(LLMs)的工具,而 DeepSeek 是一个基于 LLM 的应用或模型。如果你想在本地使用 LM Studio 安装并运行 DeepSeek 模型,以下是详细步骤:

1. 安装 LM Studio

首先,下载并安装 LM Studio:
  1. 访问 LM Studio 的官方网站:LM Studio - Discover, download, and run local LLMs
  2. 根据你的操作系统(Windows、macOS 或 Linux)下载适合的版本。
  3. 安装 LM Studio 并启动。
  4. 可以选择语言根据自己的需要。
### 安装部署DeepSeek模型本地指南 #### 准备环境 为了在本地环境中成功安装并运行 DeepSeek 模型,需先确认已安装 Python 和 pip 工具。建议创建虚拟环境来管理项目依赖项[^1]。 ```bash python3 -m venv lmstudio-env source lmstudio-env/bin/activate # Linux 或 macOS 用户 lmstudio-env\Scripts\activate # Windows 用户 ``` #### 下载LM Studio工具包 访问官方仓库获取最新版本 LM Studio 的源码或二进制文件,并按照说明完成下载过程[^2]。 #### 配置开发环境 解压所获得的数据包至指定目录下;通过命令行进入该路径执行如下操作以确保所有必要的库都被正确加载: ```bash pip install --upgrade pip setuptools wheel pip install . ``` 上述指令会读取 `setup.py` 文件中的定义自动解析并安装缺失的部分[^3]。 #### 获取预训练好的DeepSeek模型权重 联系提供方或者前往公开资源页面寻找对应的checkpoint链接地址用于后续加载[^4]。 #### 编写配置脚本 编辑一个名为 `config.yaml` 的文档用来存储参数设定以及数据集位置等重要信息: ```yaml model_name: "deepseek" data_dir: "./datasets/" output_dir: "./results/" ... ``` 此部分具体取决于实际应用场景和个人偏好设置[^5]。 #### 启动服务端口监听 当一切准备就绪之后,在终端输入以下内容启动HTTP API服务器以便于远程调用预测接口功能: ```bash lm_studio serve --host=0.0.0.0 --port=8080 ``` 此时应该可以在浏览器里打开 http://localhost:8080 来验证是否正常工作了[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值