ROI与mask掩码

本文详细介绍了OpenCV中如何使用ROI(感兴趣区域)进行图像裁剪,并结合mask进行高级融合,包括矩形区域选择、掩码操作的应用和不规则ROI的实现。通过实例展示了如何利用mask控制操作范围,提升处理效率和精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

感兴趣区域ROI

mask--掩码/掩膜操作(8位单通道图像,灰度图或者二值图)


感兴趣区域ROI

#include <iostream>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

void main()
{
	Mat img = imread("1.jpg");
	Mat imgROI1 = img(Rect(20, 20, 200, 200));//Rect 起点坐标,宽,高
	Mat imgROI2 = img(Range(20, 220), Range(20, 220));//Range 行列范围,效果同上

	//ROI图像融合
	Mat logo = imread("logo.jpg");
	
	Mat imgROI3 = img(Rect(20, 20, logo.cols, logo.rows));
	logo.copyTo(imgROI3);
	imshow("img", img);

	waitKey(0);
}

注意:

  1. 一般为矩形区域
  2. 能够确定分析重点,减少处理时间,增加精度
  3. 定义方法:使用Rect表示矩形区域或用Range设定行列范围

 

mask--掩码/掩膜操作(8位单通道图像,灰度图或者二值图)

自述:我觉得mask的作用就是确定起作用的位置区域

#include <iostream>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

void main()
{
	Mat img = imread("1.jpg");
	Mat logo = imread("lena.jpg");
	Mat mask = imread("mask.jpg", 0);

	//Mat mask = Mat::zeros(logo.size(),CV_8UC1);//先创建一个纯黑的图像,单通道的图像
	//circle(mask, Point(mask.rows/2,mask.cols/2),100,Scalar(255),-1,8);//画一个填充的白色圆
	//imwrite("mask.jpg", mask);

	Mat imgROI = img(Rect(20, 20, logo.cols, logo.rows));//Rect 起点坐标,宽,高
	logo.copyTo(imgROI, mask);//mask划定作用范围

	imshow("dst",img);

	waitKey(0);
}

注意:

  1. 掩码某个位置如果为0(黑色),则在此位置上的操作不起作用
  2. 掩码某个位置如果不为0(不是黑色),则在此位置上的操作会起作用
  3. 可以用来提取不规则ROI---高级图像融合

高级图像融合

#include <iostream>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

int main()
{
	Mat img = imread("1.jpg");
	Mat logo = imread("logo.jpg");
	if (logo.empty())
	{
		cout << "can not !"<< endl;
		return -1;
	}

	//高级图像融合,效果不太好
	Mat mask = imread("logo.jpg", 0);
	bitwise_not(mask, mask);
	threshold(mask,mask,80,255,THRESH_BINARY);

	//Mat mask = Mat::zeros(logo.size(),CV_8UC1);//先创建一个纯黑的图像,单通道的图像
	//circle(mask, Point(mask.rows/2,mask.cols/2),100,Scalar(255),-1,8);//画一个填充的白色圆
	//imwrite("mask.jpg", mask);

	Mat imgROI = img(Rect(20, 20, logo.cols, logo.rows));//Rect 起点坐标,宽,高
	logo.copyTo(imgROI, mask);

	imshow("dst", img);
	waitKey(0);
	return 0;
}

 

### Mask R-CNN 掩码生成分类原理 Mask R-CNN 是一种用于实例分割的任务框架,它不仅能够定位对象的位置并给出边界框,还能为每个检测到的对象提供像素级别的掩码。该模型继承自 Faster R-CNN 的架构,并在此基础上增加了分支来专门负责掩码预测。 #### 掩码生成过程 对于每一个感兴趣区域 (Region of Interest, RoI),除了像 Faster R-CNN 中那样计算边框回归和类别概率外,还额外引入了一个全卷积网络(FCN) 来预测对应于该 RoI 的二进制掩码[^1]。具体来说: - **RoI Align 层**:为了提高精度,Mask R-CNN 使用了改进版的 RoI Pooling——即 RoI Align 方法。这种方法通过双线性插值的方式避免量化误差的影响,从而更精确地映射特征图上的位置到原始图片中的坐标。 - **掩码预测头**:针对每个候选框(Proposal),会有一个小型 FCN 负责输出固定大小的空间布局(通常是 28×28 或者更高分辨率)。这个空间布局表示的是前景部分相对于背景的概率分布;最终得到的就是一个形状为 H × W × C 的张量,其中H 和W 表示高度宽度而C 则代表通道数或者说类别数量。由于采用了独立的分支来进行掩码估计,所以即使两个重叠的目标也可以被区分开来而不必担心混淆问题的发生。 ```python import torch.nn as nn class MaskRCNN(nn.Module): def __init__(self, num_classes): super(MaskRCNN, self).__init__() # 定义其他层... # 添加掩码预测头部 self.mask_head = nn.Sequential( nn.ConvTranspose2d(in_channels=256, out_channels=256, kernel_size=2, stride=2), nn.ReLU(inplace=True), nn.Conv2d(in_channels=256, out_channels=num_classes, kernel_size=1) ) def forward(self, x): # 前向传播逻辑... mask_predictions = self.mask_head(x) return mask_predictions ``` #### 类别预测机制 值得注意的是,在 Mask R-CNN 架构里,类别标签的预测并不依赖于所生成的掩码本身,而是由另一个单独设计好的子网完成。这意味着即便是在同一区域内存在多个不同类型的物体时也能准确无误地区分它们各自所属种类的信息。 这种分离式的结构使得整个系统的鲁棒性和泛化能力得到了显著提升,同时也简化了训练流程,因为不再需要考虑多任务学习之间的相互干扰因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

coder_Alger

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值