弗罗贝尼乌斯范数 matlab,【Frobenius norm(弗罗贝尼乌斯-范数)(F-范数)】

本文介绍了弗罗贝尼乌斯范数,它是矩阵的平方和的开方值,常用于低秩矩阵近似。同时讨论了与之相关的Minkowski-P范数和不同距离的概念,如曼哈顿距离、欧氏距离和切比雪夫距离。在MATLAB中,可以使用norm函数计算弗罗贝尼乌斯范数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(1)Frobenius 范数(F-范数)

一种矩阵范数,记为:332ca81e04c50fcca54c9402b25c7696.png

即矩阵中每项数的平方和的开方值。

d6a808f99c1f9192ac918916889237a3.png

0cf08475cc9d1cf89c7ec203ae10b051.png

这个范数是针对矩阵而言的,具体定义可以类比 向量的L2范数。

可用于 利用低秩矩阵来近似单一数据矩阵。

用数学表示就是去找一个秩为k的矩阵B,使得矩阵B与原始数据矩阵A的差的F范数尽可能地小。

(2)Minkowski-P范数(矩阵元范数?)

两个n维变量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的闵可夫斯基距离(其中p是一个变参数)定义为:

0d23adcafbc05474f9e3c7badb39ed2e.png

当p=1时,就是曼哈顿距离(Manhattan distance),L1距离。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值