Chapter 11

summary

        SAT求解器从冲突子句中使用learned information获益匪浅。大多数learned information都是特定于电路的,也可以用于其他故障。提出了重用动态学习信息的策略。这些策略提高了性能,减少了SAT-based ATPG无法分类的故障数量。
        在工业电路中,ATPG算法必须处理电路环境以及三态元件施加的限制。详细解释了如何使用四值逻辑和布尔编码在基于SAT的方法中处理这些附加约束。进一步研究了几种布尔编码的有效性。SAT实例越大,SAT解算器求解它所需的运行时间就越多(即使可能出现异常)。因此,已经提出了减少必须由SAT解算器求解的CNF公式大小的程序。除了减少CNF大小之外,结构信息还被纳入决策启发式中,从而产生了更稳健的搜索过程。
        我们进一步展示了如何将SAT-based ATPG算法集成到工业ATPG框架中。为此,已经解决了过度指定测试模式的缺点,并提出了减小测试模式大小的程序。提出了一种基于经典结构的ATPG引擎和基于SAT的ATPG引擎的组合,利用了两者的优点。这两种方法的结合产生了一个快速且高度健壮的ATPG框架

        延迟故障模型被认为是SAT技术的延伸。过渡延迟故障模型(TDFM)在CNF中通过注入stuck at 故障来建模。因此,SAFM的高效SAT技术也可以应用于TDFM。
        此外,还介绍了用于路径延迟故障模型(PDFM)的SAT-based ATPG。多值逻辑已被用于生成工业电路的鲁棒和非鲁棒测试。已经提出了结构技术来减小CNF公式的尺寸。此外,静态值的增量公式利用了一个事实,即非稳健和稳健测试生成是按顺序执行的。布尔编码的影响已被进一步研究。

outlook

        可以确定未来工作的几个问题。到目前为止,目前最重要的故障模型,即SAFM、TDFM和PDFM,已使用基于SAT的ATPG解决。然而,由于特征尺寸的不断减小和新的制造技术,观察到了这些经典故障模型没有涵盖的新故障效应。因此,新的故障模型也考虑了参数故障。开发的基于SAT的方法能否得到增强,以便能够处理这些新开发的故障模型

        另一个问题是测试集的大小。随着新的故障模型和电路规模的增加,测试集的规模(即测试模式的数量)变得非常大。自动测试设备的存储空间有限,因此测试集的大小是一个重要的financia问题。SAT-based ATPG方法能否通过创建更紧凑的测试模式来减少测试集的大小?与测试压缩或测试压实技术紧密结合是否会减少测试集尺寸?

        此外,在考虑当今的设计流程时,转移到更高的抽象级别是一个重要的问题。来自布局的技术数据对于建模影响时序、导致桥接故障等的故障影响变得越来越重要。能否增强基于SAT的工具,以便在具有可接受的运行时间的同时纳入更多细节?如何在SAT引擎所需的抽象和模型的准确性之间实现权衡是一个开放且具有挑战性的问题。
        在更高层次上,同样的问题也很有趣。RT级ATPG已经被考虑了很长时间,并且有一些优势。与此同时,在证明过程中直接促进word级信息的强大推理引擎正在开发中,通常被称为可满足性模理论(SMT)的求解器。这些解算器在更高的抽象级别上为ATPG带来了显著的优势吗?还是这些核心引擎允许在较低的抽象级别上建立更精确的模型?

        另一个问题是最近从单核处理器向多核处理器的转变。常见的ATPG技术是单线程实现的。
只使用多核处理器的一个核会浪费CPU时间。分别开发多线程ATPG技术或SAT解算器来利用多核体系结构,以减少不断增加的总体计算时间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值