python中常用的几个内置函数,map,reduce,filter,sort,sorted

本文深入探讨了Python中的高阶函数,包括map、filter、reduce的使用方法及应用场景。通过实例讲解了如何利用这些函数处理数据,提升代码效率。同时,文章还介绍了排序函数sort和sorted的使用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#python map函数的用法
#map()函数语法
#map(function,iterable,。。。)接收两个参数,第一个参数是函数,第二个参数是可迭代对象
def square(x):
    return x**2
r = map(square,[1,2,3,4,5])
print(r)#返回的是一个可迭代对象
print(list(r))
# map和lambda结合使用
r = map(lambda x:x**2,[1,2,3,4,5])
print(list(r))
b = map(lambda x,y:x**2+y,[1,2,3,4,5,6],[1,2,3,4,5])
print(list(b))

map可以接受多个可迭代对象,计算的时候以最短的为准

 

# s = map(lambda x,y:x*y,range(5),range(6))
# print(list(s))#结果是一个内存地址把他转化成列表显示
#
# #filter(function,iterable) 第一个参数接收函数,第二个参数可迭代对象
# #功能,返回函数执行结果为true的结果,过滤调为false的结果
# a = filter(lambda x:x%2,range(9))
# print(list(a))
#
# #python3中,reduce()函数从全局空间力移除了,被放在functools模块中,
# #引用functools模块来调用reduce()函数
#
# from functools import reduce
# # reduce(function,iterable)第一个参数接收函数,第二个参数可迭代对象
# # 返回连续计算的结果
# c = reduce(lambda x,y:x*y,range(1,5))
# print(c)
#
# d = reduce(lambda x,y:x-y,[1,2,3,4],5)
# print(d)
#
# f = reduce(lambda x,y:x+y,["a","b","c","d"],"f")
# print(f)
# #通过f的计算结果可以得到先吧最后的值拿来传给x
#
# # sort,sorted函数
# e = [1,57,11,4,22,77,4,11,75]
# e.sort()#正序
# print(e)
# e.sort(reverse=True)#倒序
# print(e)

# g = ["s","d","h","p","a"]
# g1 = sorted(g)
# print(g1)
# g.sort()
# print(g)
#
# a = ["s","d","h","p","a"]
# b = a.sort()#注意sort方法会对原来的对象进行操作,没有返回值,所以此时b的值为None
# print(b)

 

c = {"a":18,"b":17,"c":19,"d":20}
b = []
for k,v in c.items():
    d = (k,v)
    b.append(d)
print(b)
cc = sorted(b,key=lambda x:x[1])
print(cc)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值