天池AIEarth气象海洋预测竞赛Topline优化教程

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本教程针对阿里云天池平台的AIEarth气象海洋预测竞赛,详细介绍了构建高性能模型所需的各项关键知识点。涵盖了时间序列分析、ARIMA模型、LSTM网络等模型的构建与优化,以及如何在竞赛中应用特征工程、集成学习策略、数据预处理、模型评估、超参数调优和模型解释等技巧。通过代码示例,帮助参赛者深入理解时间序列预测,并掌握提升模型精度的方法。
天池”AIEarth“气象海洋预测竞赛的Topline学习教程.zip

1. 时间序列分析的基础与实践

1.1 时间序列分析的重要性

时间序列分析是理解数据随时间变化规律的关键技术,无论是在金融市场分析、库存管理、还是在气象预测等领域都发挥着举足轻重的作用。掌握时间序列分析方法,能够帮助我们做出更为准确的预测和决策。

1.2 时间序列分析的基本概念

在深入了解时间序列分析之前,先要熟悉几个核心概念:平稳性、季节性、趋势和周期性。平稳性指的是数据的统计特性不随时间改变;季节性是周期性变化中因季节引起的数据波动;趋势反映了数据随时间的整体走向;周期性则是指数据的周期性波动。

1.3 时间序列分析的实践步骤

时间序列分析包括以下实践步骤:数据收集、数据预处理、模型选择、模型训练、模型评估以及预测。每一步都是为了更好地挖掘数据背后的模式,为预测未来数据提供科学依据。

graph LR
A[数据收集] --> B[数据预处理]
B --> C[模型选择]
C --> D[模型训练]
D --> E[模型评估]
E --> F[预测]

以上代码块中,Mermaid语法呈现了一个时间序列分析的流程图,直观展示了从数据收集到预测的全过程,为读者提供了一个清晰的实践框架。

2. ARIMA模型的构建与实际应用

2.1 ARIMA模型的理论基础

2.1.1 ARIMA模型的数学原理

ARIMA模型,即自回归积分滑动平均模型(AutoRegressive Integrated Moving Average Model),是时间序列分析中用于预测和数据分析的重要工具。其核心思想是将非平稳时间序列通过差分转换为平稳序列,然后构建一个线性模型来描述其统计特性。ARIMA模型由三个部分组成:自回归项(AR)、差分项(I)和滑动平均项(MA)。数学上,可以将ARIMA(p,d,q)模型表达为以下形式:

[ \phi(B) (1-B)^d Y_t = \theta(B) \epsilon_t ]

其中,( \phi(B) )和( \theta(B) )分别表示自回归和滑动平均参数的多项式,( B )是后移算子,( (1-B)^d )表示差分操作,( Y_t )是时间序列值,( \epsilon_t )是误差项。

2.1.2 ARIMA模型的关键参数

ARIMA模型中的关键参数p、d、q分别代表模型的自回归阶数、差分次数和滑动平均阶数。这些参数的设定对于模型的预测性能至关重要。

  • p:自回归项的数目,代表模型需要考虑的历史观测值的数量。
  • d:差分次数,将非平稳时间序列转换为平稳序列需要进行的差分操作次数。
  • q:滑动平均项的数目,代表模型需要考虑的误差项历史值的数量。

选择合适的参数组合,需要依靠数据特性分析、统计测试和诊断检验,最终通过模型的拟合度和预测能力来决定。

2.2 ARIMA模型的构建流程

2.2.1 数据的平稳化处理

时间序列数据的平稳性是建立ARIMA模型的重要前提。如果数据是不平稳的,就必须通过差分等方法将其转化为平稳序列。数据平稳性的检验通常使用ADF检验(Augmented Dickey-Fuller Test)来进行。如果ADF检验结果的p值小于0.05,则拒绝原假设,可以认为数据是平稳的。

平稳化处理的代码示例如下:

from statsmodels.tsa.stattools import adfuller

# ADF检验
def adf_test(timeseries):
    result = adfuller(timeseries, autolag='AIC')
    print('ADF Statistic: %f' % result[0])
    print('p-value: %f' % result[1])

# 示例时间序列数据
timeseries = [数据点列表]

# 检测是否平稳
adf_test(timeseries)

若数据不平稳,则需要进行差分操作,直至数据平稳。

2.2.2 参数的估计与检验

参数估计通常采用最大似然估计(MLE)或最小二乘法等统计方法。在Python的 statsmodels 库中,可以使用 ARIMA 类对模型参数进行估计。参数检验包括参数显著性检验和模型残差检验等。

参数估计的代码示例如下:

from statsmodels.tsa.arima.model import ARIMA

# 构建ARIMA模型
model = ARIMA(timeseries, order=(p, d, q))
model_fit = model.fit()
print(model_fit.summary())

参数检验的代码示例如下:

# 残差分析
residuals = pd.DataFrame(model_fit.resid)
fig, ax = plt.subplots(1,2)
residuals.plot(title="Residuals", ax=ax[0])
residuals.plot(kind='kde', title='Density', ax=ax[1])
plt.show()

2.2.3 模型的诊断检验

诊断检验的目的是评估模型是否合理,包括残差的独立性、正态性检验和同方差性检验等。通过这些检验可以判断模型是否需要改进。

残差正态性检验可以使用偏度、峰度等指标,正态概率图(QQ图)等方法。同方差性检验可以使用ARCH LM检验(自回归条件异方差检验)等。

2.3 ARIMA模型在气象预测中的应用案例

2.3.1 实际气象数据的案例分析

以气象数据为例,我们可以应用ARIMA模型进行气温或降雨量的预测。气象数据通常具有一定的季节性和趋势性,因此在构建模型前需要对这些特性进行处理。

具体操作可以分为以下步骤:

  • 数据清洗:去除缺失值和异常值。
  • 特征提取:包括季节性指标等。
  • 模型构建:构建ARIMA模型,并进行参数调优。
  • 模型验证:使用历史数据进行交叉验证,评估模型效果。

2.3.2 模型效果评估与优化

模型评估常用的指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)等。这些指标越小,表示模型预测越准确。另外,还可以通过绘制预测图与实际值进行对比,以直观地评估模型表现。

代码示例:

from sklearn.metrics import mean_squared_error

# 预测
predictions = model_fit.predict(start=预测开始位置, end=预测结束位置)

# 计算均方误差
mse = mean_squared_error(实际值, 预测值)
print('The Mean Squared Error of our forecasts is {}'.format(mse))

根据评估结果,可能需要重新调整参数,或者尝试引入外生变量,通过ARIMAX模型来优化预测效果。

3. LSTM网络在时间序列预测中的应用

3.1 LSTM网络的基本原理与结构

3.1.1 LSTM网络的核心概念

LSTM(Long Short-Term Memory)网络是一种特殊的循环神经网络(RNN)架构,它被设计来解决传统RNN在处理长期依赖问题时的梯度消失或梯度爆炸问题。LSTM的关键在于引入了一个复杂的“门”结构,这允许网络通过时间序列存储信息,这样长距离的数据相关性也能被捕捉到。

LSTM网络结构

一个标准的LSTM单元由以下几个部分组成:

  • 输入门 :决定了哪些新信息需要被存入单元状态。
  • 遗忘门 :决定了哪些信息应该被从单元状态中删除。
  • 单元状态 :可以被看作是“内存”,其中有可以长时间持续的信息流。
  • 输出门 :决定了下一个隐藏状态的输出值。

LSTM网络结构示意如下:

graph LR
    A[输入数据] -->|x(t)| B(输入门)
    A -->|h(t-1)| C(遗忘门)
    A -->|h(t-1)| D(输出门)
    B --> E[单元状态]
    C --> E
    D --> F[隐藏状态]
    E -->|+| F
    F -->|h(t)| G[输出数据]

3.1.2 LSTM与传统RNN的对比

与传统的RNN相比,LSTM网络的关键优势在于其处理长期依赖的能力更强。在普通的RNN中,随着序列长度的增加,梯度可能会迅速衰减或爆炸,导致网络在学习过程中难以保持长期依赖信息。

LSTM通过引入门控机制来解决这一问题,允许网络在必要时保持或更新信息。这种设计让LSTM在时间序列分析、语音识别、自然语言处理等多个领域表现出色。

传统RNN和LSTM网络的比较:
graph LR
    A[输入数据] -->|x(t)| B(传统RNN)
    A -->|x(t)| C(LSTM)
    B --> D[隐藏状态h(t)]
    C --> E[隐藏状态h(t)]
    D --> F[梯度消失或爆炸]
    E --> G[长期依赖]

3.2 LSTM网络的构建与训练

3.2.1 数据的预处理与标准化

在构建LSTM网络之前,数据预处理是一个不可或缺的步骤。对于时间序列预测来说,数据预处理包括去除异常值、填充缺失值、归一化或标准化等步骤。标准化通常是将数据缩放至0均值和单位方差,这样做有助于加快网络的收敛速度,提高模型的性能。

3.2.2 LSTM网络的搭建与优化

在搭建LSTM网络时,需要选择合适的网络结构和参数,如层数、单元数、激活函数等。通常,使用TensorFlow或Keras等深度学习框架可以较为简便地搭建LSTM网络。一个基础的LSTM模型搭建流程如下:

from keras.models import Sequential
from keras.layers import LSTM, Dense

model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(input_shape)))
model.add(LSTM(units=50))
model.add(Dense(1))

model.compile(optimizer='adam', loss='mean_squared_error')

在模型构建和训练过程中,不断进行参数优化和模型调优是提高模型预测性能的重要步骤。例如,使用不同的优化算法、调整学习率、增加Dropout层等,都是常见的优化策略。

3.2.3 损失函数与优化算法的选择

在LSTM网络中,损失函数和优化算法是模型训练的关键组成部分。损失函数衡量模型预测值与实际值之间的差异,常用的损失函数有均方误差(MSE)、均方根误差(RMSE)等。选择合适的损失函数有助于更好地评估模型性能。

优化算法如随机梯度下降(SGD)、Adam、RMSprop等,能够根据损失函数指导模型权重的更新。在实际应用中,通常会尝试多种优化算法,并结合模型的训练曲线选择最适合当前问题的算法。

3.3 LSTM模型在气象预测中的应用

3.3.1 模型的实战应用案例

在气象预测领域,LSTM模型被广泛应用于温度、降水量、风速等多种气象因素的预测。利用历史气象数据,LSTM能够学习气象变量之间的复杂时间依赖关系,并对未来气象情况进行预测。

3.3.2 模型预测结果的解读与分析

通过LSTM模型得到的预测结果,可以通过多种方式来解读和分析。例如,可以绘制预测值与真实值的对比图,计算预测误差,进行误差分析等。通过这些分析,研究人员可以评估模型的预测准确性,并为进一步的模型改进提供依据。

import matplotlib.pyplot as plt

# 假设y_true是实际值,y_pred是模型预测值
plt.plot(y_true, label='Actual')
plt.plot(y_pred, label='Predicted')
plt.legend()
plt.show()

通过上述章节的介绍,我们可以看到LSTM网络在时间序列预测领域,特别是在气象预测中的强大潜力和应用价值。通过合理设计模型结构、优化网络参数,以及结合实际问题对模型进行细致的调优和分析,LSTM可以成为解决复杂时间序列问题的有效工具。

4. 阿里云天池平台竞赛经验分享

4.1 天池平台竞赛规则解读

4.1.1 竞赛流程与评分机制

在阿里云天池平台上,竞赛通常遵循一套标准化的流程,这对于初学者来说可以快速上手,对于经验丰富的数据科学家来说,则需要更加关注细节来获取更好的排名。

竞赛的流程一般包括:数据公开阶段、报名阶段、提交答案阶段和最终评审阶段。在数据公开阶段,参赛者会获取到数据集以及赛题的详细描述,这是构建模型的基础。接下来是报名阶段,参赛者需要在平台上注册并创建自己的队伍。提交答案阶段是整个竞赛的核心,参赛者需要利用提供的数据集训练出自己的模型,并对测试集进行预测,然后提交预测结果。最终评审阶段会根据提交的预测结果来决定参赛者的最终排名。

评分机制通常是基于某种误差度量标准,如均方误差(MSE)、平均绝对误差(MAE)或对数损失等。在不同的竞赛中,根据赛题的特性,可能会采取不同的评分标准。例如,在回归问题中,均方误差是最常用的评分指标,而在分类问题中,则可能采用准确度或F1分数等。

4.1.2 赛题特点与挑战分析

赛题的特点和挑战分析是竞赛准备阶段不可或缺的一环。每个赛题都有其独特之处,这可能包括数据的特征、问题的复杂性以及模型的性能要求等。

举例来说,一些赛题的数据集可能非常庞大,涉及数以亿计的样本和数以万计的特征,这就要求参赛者具备高效的数据处理能力,以及能够在大规模数据集上训练模型的技能。另外,有的赛题可能涉及多标签或多任务学习,这类问题的挑战在于模型需要同时处理多个相关但又独立的预测任务。

另一个挑战可能是数据的不平衡问题,比如在金融领域欺诈检测的赛题中,非欺诈的样本远多于欺诈的样本,因此模型很容易偏向于预测多数类。此外,一些赛题可能还包含噪音数据或者缺失值,需要参赛者在数据预处理上付出更多的时间和精力。

4.2 特征工程与竞赛策略

4.2.1 特征提取与选择的方法

特征工程是机器学习中至关重要的一步,它涉及提取和选择对预测任务最有用的信息。在天池竞赛中,有效地进行特征工程往往能显著提高模型的性能。

特征提取的方法多样,常见的有:一元编码(One-hot Encoding)、主成分分析(PCA)、自动编码器(AutoEncoders)等。一元编码通常用于处理类别数据,可以将类别转换为数值形式;PCA用于降维,减少特征空间的维数,同时尽量保留原始数据的信息;而自动编码器则是一种深度学习方法,可以学习到数据中的有效表示。

特征选择也是至关重要的步骤,它可以帮助提高模型的泛化能力并降低过拟合的风险。常见的特征选择方法包括:基于模型的特征选择(如使用随机森林的重要性分数)、基于统计的方法(如相关性分析)、以及基于包装方法的特征选择(如递归特征消除)。

4.2.2 竞赛策略与模型优化技巧

参与天池平台的竞赛,一个重要的策略是要快速迭代,不断优化模型。这通常包括模型的选择、超参数调整、以及在训练过程中引入的各种正则化技术。

竞赛策略包括对问题的理解深度、数据的充分利用、以及对模型的优化能力。在竞赛中,使用集成学习方法往往可以提升模型的稳健性,比如通过Bagging或Boosting方法结合多个模型来提高最终的预测准确率。同时,参赛者需要掌握如何使用交叉验证来评估模型在未知数据上的表现,并通过网格搜索或随机搜索等技术进行超参数优化。

在模型优化方面,常见的技巧有:使用Dropout技术来防止神经网络过拟合、采用批量归一化(Batch Normalization)来加速模型训练过程、以及通过学习率调整策略来优化梯度下降过程等。

4.3 数据预处理与模型评估

4.3.1 数据清洗与异常值处理

数据预处理是竞赛中的一大挑战,也是影响模型性能的关键步骤。首先,需要进行数据清洗,包括去除重复记录、处理缺失值以及纠正错误数据。

异常值的检测和处理是数据清洗中尤为重要的一个环节。异常值可能因为录入错误、数据损坏或其他异常情况产生,它们会严重扭曲模型的训练和预测。常用的方法有基于统计的异常值检测(如箱型图)、基于模型的异常检测(如孤立森林)等。对于检测到的异常值,可以选择删除、替换或使用特定方法进行修正常见的处理方式。

4.3.2 模型评估指标的对比分析

模型评估是检验模型性能的重要手段,选择合适的评估指标可以帮助参赛者准确了解模型的表现。对于不同的问题类型,使用的评估指标也不尽相同。

在回归问题中,常用的评估指标包括均方误差(MSE)、均方根误差(RMSE)和平均绝对误差(MAE)。对于分类问题,常用的指标有准确率、精确率、召回率、F1分数等。在多分类问题中,混淆矩阵也是一个常用的评估工具,它可以帮助理解模型在不同类别上的表现。

除了以上提到的绝对数值指标外,还有一些相对比较的指标,如ROC曲线下的面积(AUC)和PR曲线下的面积。对于竞赛来说,尤其是在排名竞争激烈的环境中,选择正确的评估指标可以帮助参赛者做出更好的模型调整决策。

接下来,我们将详细探讨模型评估中常用的评估指标,并通过一些具体的代码示例和逻辑分析,深入理解每个指标的实际应用和选择理由。这将帮助读者更好地掌握如何在实际竞赛中进行模型的评估和优化。

5. 模型的超参数调优与解释

在机器学习领域,模型的超参数调优是实现高性能模型的关键步骤,而模型的可解释性则是增加模型透明度和可信度的重要环节。本章节将从超参数调优的方法论、实战调优过程以及模型可解释性的探究三个方面进行深入讨论。

5.1 超参数调优的方法论

超参数是机器学习模型外部设置的参数,它们不能通过训练直接学习得到。因此,合理选择超参数是优化模型性能的重要手段。

5.1.1 网格搜索与随机搜索

网格搜索(Grid Search)和随机搜索(Random Search)是两种常用的超参数优化方法。

  • 网格搜索 通过定义一个超参数网格,系统地遍历所有可能的参数组合,评估每一个组合的模型性能,从而找到最佳的超参数配置。其缺点是计算量巨大,特别是当参数空间很大时。

  • 随机搜索 则是在指定的超参数空间中随机抽取一定数量的组合进行评估。它通常比网格搜索更高效,尤其是当只有部分超参数对模型性能影响较大时。

5.1.2 贝叶斯优化与进化算法

贝叶斯优化和进化算法是更为高级的超参数搜索策略,它们能够更智能地探索超参数空间。

  • 贝叶斯优化 利用贝叶斯原理,结合已评估点的信息来指导下一个超参数组合的选择。它通过构建一个概率模型来预测哪些未尝试的超参数组合可能带来更优的性能。

  • 进化算法 模拟生物进化的过程,通过选择、交叉和变异等操作迭代地生成新的超参数组合。这些算法在处理大量超参数的复杂优化问题时表现尤为突出。

5.2 模型超参数的实战调优

实战中,我们经常会遇到需要对模型的超参数进行调优的情况。下面将通过一个具体的案例来展示超参数调优的过程。

5.2.1 实际案例中的调优过程

假设我们正在使用支持向量机(SVM)进行分类任务,需要对惩罚参数C和核函数参数gamma进行调优。

  1. 定义搜索空间 :假设C的取值范围为[0.1, 10],gamma的取值范围为[0.001, 1]。

  2. 选择优化方法 :决定使用随机搜索作为我们的调优策略。

  3. 模型训练与评估 :使用交叉验证的方式来评估每一个超参数组合的模型性能。在每一次迭代中,根据模型的验证集准确率来记录最佳的超参数组合。

  4. 终止条件 :设定一个迭代次数或者在一定时间内没有改进则终止搜索。

通过这个过程,我们能够找到一组使得模型性能最优的超参数。

5.2.2 调优结果的分析与评估

找到最佳超参数组合后,还需要分析这些参数为何能够提升模型性能。这可能涉及到对问题领域的深入理解,也有可能是通过实验来验证不同参数组合对模型性能的影响。

5.3 模型的可解释性探究

随着机器学习模型越来越复杂,模型的可解释性(Model Interpretability)成为了一个重要的研究领域。

5.3.1 模型解释的方法与工具

模型解释的方法可以分为两大类:模型可解释的(如线性回归、决策树等)和模型不可解释的(如深度学习模型)。

  • 模型可解释的方法 通过简化模型或者直接使用可解释的模型来实现解释性。

  • 模型不可解释的方法 ,如LIME(局部可解释模型-不透明模型解释器)和SHAP(SHapley Additive exPlanations)值,用于解释复杂模型的单个预测。

5.3.2 模型结果的可视化技术

可视化是提高模型解释性的重要手段。通过可视化技术,可以直观地展示模型在哪些区域做出了什么样的预测。

以深度学习模型为例,可以使用特征映射(Feature Maps)和激活图(Activation Maps)来揭示网络在处理输入数据时的内部工作机制。

5.3.3 模型解释性对竞赛的影响

在数据科学竞赛中,模型的解释性不仅可以帮助参赛者理解模型的决策过程,还能提高模型的可信度,尤其是当模型需要为实际问题提供决策支持时。

例如,在医疗影像分析竞赛中,模型不仅能准确预测疾病,还能够指出哪些图像区域导致了该预测,这将大大增加医生对该模型的信任。

通过以上三节的内容,我们了解了超参数调优的方法论,掌握了超参数实战调优的过程,以及模型可解释性的重要性和探究方法。这些知识将帮助我们在实际应用中更好地构建和评估机器学习模型。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本教程针对阿里云天池平台的AIEarth气象海洋预测竞赛,详细介绍了构建高性能模型所需的各项关键知识点。涵盖了时间序列分析、ARIMA模型、LSTM网络等模型的构建与优化,以及如何在竞赛中应用特征工程、集成学习策略、数据预处理、模型评估、超参数调优和模型解释等技巧。通过代码示例,帮助参赛者深入理解时间序列预测,并掌握提升模型精度的方法。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

内容概要:本文针对火电厂参与直购交易挤占风电上网空间的问题,提出了一种风火打捆参与大用户直购交易的新模式。通过分析可再生能源配额机制下的双边博弈关系,建立了基于动态非合作博弈理论的博弈模型,以直购电价和直购电量为决策变量,实现双方收益均衡最大化。论文论证了纳什均衡的存在性,并提出了基于纳什谈判法的风-火利益分配方法。算例结果表明,该模式能够增加各方收益、促进风电消纳并提高电网灵活性。文中详细介绍了模型构建、成本计算和博弈均衡的实现过程,并通过Python代码复现了模型,包括参数定义、收益函数、纳什均衡求解、利益分配及可视化分析等功能。 适合人群:电力系统研究人员、能源政策制定者、从事电力市场交易的工程师和分析师。 使用场景及目标:①帮助理解风火打捆参与大用户直购交易的博弈机制;②为电力市场设计提供理论依据和技术支持;③评估不同政策(如可再生能源配额)对电力市场的影响;④通过代码实现和可视化工具辅助教学和研究。 其他说明:该研究不仅提供了理论分析,还通过详细的代码实现和算例验证了模型的有效性,为实际应用提供了参考。此外,论文还探讨了不同场景下的敏感性分析,如证书价格、风电比例等对市场结果的影响,进一步丰富了研究内容。
资源下载链接为: https://pan.quark.cn/s/d37d4dbee12c A:计算机视觉,作为人工智能领域的关键分支,致力于赋予计算机系统 “看懂” 世界的能力,从图像、视频等视觉数据中提取有用信息并据此决策。 其发展历程颇为漫长。早期图像处理技术为其奠基,后续逐步探索三维信息提取,与人工智能结合,又经历数学理论深化、机器学习兴起,直至当下深度学习引领浪潮。如今,图像生成和合成技术不断发展,让计算机视觉更深入人们的日常生活。 计算机视觉综合了图像处理、机器学习、模式识别和深度学习等技术。深度学习兴起后,卷积神经网络成为核心工具,能自动提炼复杂图像特征。它的工作流程,首先是图像获取,用相机等设备捕获视觉信息并数字化;接着进行预处理,通过滤波、去噪等操作提升图像质量;然后进入关键的特征提取和描述环节,提炼图像关键信息;之后利用这些信息训练模型,学习视觉模式和规律;最终用于模式识别、分类、对象检测等实际应用。 在实际应用中,计算机视觉用途极为广泛。在安防领域,能进行人脸识别、目标跟踪,保障公共安全;在自动驾驶领域,帮助车辆识别道路、行人、交通标志,实现安全行驶;在医疗领域,辅助医生分析医学影像,进行疾病诊断;在工业领域,用于产品质量检测、机器人操作引导等。 不过,计算机视觉发展也面临挑战。比如图像生成技术带来深度伪造风险,虚假图像和视频可能误导大众、扰乱秩序。为此,各界积极研究检测技术,以应对这一问题。随着技术持续进步,计算机视觉有望在更多领域发挥更大作用,进一步改变人们的生活和工作方式 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值