布隆过滤器 以及缓存穿透问题

本文介绍了缓存穿透的概念及其对数据库的影响,并详细解释了布隆过滤器的工作原理及如何利用它来解决缓存穿透问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 前言

今天从客观的角度来分析下,什么是缓存穿透,什么是布隆过滤器,布隆过滤器是如何解决缓存穿透的。

2. 适合人群

  • 对布隆过滤器不熟悉的人
  • 对Redis 缓存穿透不熟悉的人

3. 开始

3.1 什么是缓存穿透

在这里插入图片描述

  • 其实通过上图我们可以知道,Redis是起到了一个缓存中间件的作用。我们会将一部分的数据保存到Redis中。当请求过来的时候,可以通过Redis获取到数据。避免了所有的请求到链接数据库,反而对数据库造成了一定的压力
  • 但是有一些恶意者 知道缓存中没有该值,反而故意进行请求。造成了请求穿透了Redis缓存,直接来请求数据库。过多的类似的请求会对数据库造成一定的压力,从而发生宕机。

3.2 什么是布隆过滤器

在这里插入图片描述

  • 其实布隆过滤器就是由一组二进制数组 以及hash函数组成
  • 我们将一个值 经过一系列的hash函数转换后,映射到了二进制数组的下标。此时我们就可以在该下标的位置标记为1. 1的话表示该值存在,反之默认0就是不存在
  • 其大概实现方式如上图所示。但是有可能出现不同的值 经过hash函数转换后,得到相同的值。从而造成了这种hash碰撞。
  • 所以布隆过滤器其实是存在一定的误差的。所以说从布隆过滤器中判断没有的话一定没有,有的话不一定有。 所以无论如何优化,误差一定是存在的。 那如何减少误差呢???

3.2.1 减小布隆过滤器误差

  • 增大数组(预估合适值)
    • 我们可以根据自己的业务需求,合理的增加数组大小,这样可以减少误差率,因为存放的位置多了,误差率自然就小了
  • 增加hash函数

3.3 布隆过滤器解决缓存穿透的问题

首先理解下缓存穿透的本质:就是缓存中没有数据,然后请求穿透了缓存直接请求数据库了。但是布隆过滤器验证数据是否存在准确率是100%的。所以正好跟Redis互补。 所以可以解决缓存穿透的问题

在这里插入图片描述

4. 结束

上述的问题其实就是布隆过滤器跟Redis缓存穿透的大致原理。如果上述有表述不对的地方也欢迎大家指正。

<think>嗯,用户想了解如何使用布隆过滤器防止缓存穿透,需要最佳实践和实现方法。首先,我得回顾一下缓存穿透的基本概念,就是请求的数据在缓存数据库中都不存在,导致每次请求都打到数据库,增加压力。布隆过滤器在这里的作用就是快速判断数据是否存在,从而拦截无效请求。 接下来,我需要整理布隆过滤器的工作原理。布隆过滤器通过多个哈希函数将元素映射到位数组中,查询时如果所有哈希位都为1,可能存在,否则一定不存在。这里要提到误判率,以及如何通过调整位数组大小和哈希函数数量来优化。 然后,最佳实践部分应该包括初始化布隆过滤器、数据预热、查询流程和误判处理。比如,在系统启动时,将数据库中存在的数据加载到布隆过滤器中,查询时先检查布隆过滤器,如果不存在就直接返回,避免访问缓存数据库。同时,要注意误判的情况,可能需要额外的日志或监控。 实现方法方面,用户可能需要具体的代码示例。比如使用Redis布隆过滤器模块,或者用Guava库。需要给出Java和Python的代码片段,展示如何初始化、添加数据和查询数据。另外,参数设置也很重要,比如位数组大小和哈希函数数量,可以参考一些经验值或计算公式。 还要考虑实际应用中可能出现的问题,比如如何更新布隆过滤器,当数据库新增数据时,需要同步更新布隆过滤器,否则会导致新数据被误判为不存在。另外,分布式环境下的布隆过滤器如何维护一致性,可能需要使用Redis的分布式特性。 用户提供的引用中有提到Spring Boot项目中配置Redis布隆过滤器,可以引用相关代码示例,比如注入BloomFilterHelper和RedisBloomFilter,调用add和contains方法。这部分需要确保代码的正确性,并解释每个步骤的作用。 此外,引用中提到的误判率计算和优化方向也需要涵盖。比如,误判率公式是$(1 - e^{-kn/m})^k$,调整参数m和k来平衡空间和误判率。可能还需要提到动态布隆过滤器或布谷鸟过滤器作为优化方向。 最后,总结应用场景和注意事项,比如数据预热的重要性,参数调优的必要性,以及布隆过滤器无法删除元素的限制。可能用户还想知道如何测试和监控布隆过滤器的效果,这部分可以建议添加日志记录误判情况,或者监控数据库的查询压力是否下降。 总之,回答需要结构清晰,从原理到实践,逐步引导用户理解如何部署布隆过滤器来防止缓存穿透,同时提供代码示例和参数建议,确保用户能够实际操作并优化。</think># 使用布隆过滤器防止缓存穿透的实践方法 ### 一、缓存穿透问题解析 缓存穿透指**查询不存在的数据**时,请求直接穿透缓存层到达数据库,导致数据库压力骤增。例如恶意攻击者伪造大量不存在的ID发起请求[^3]。 ### 二、布隆过滤器核心原理 1. **数据结构**:$m$位的位数组 + $k$个哈希函数 2. **写入操作**:对元素进行$k$次哈希,将对应位设为1 3. **查询操作**:若所有哈希位均为1则`可能存在`,否则`必然不存在` 4. **误判率公式**: $$ P_{error} = \left(1 - e^{-kn/m}\right)^k $$ 其中$m$为位数组长度,$n$为元素数量[^4] ### 三、最佳实践方案 #### 1. 架构设计 ```python 请求流程: 客户端 -> 布隆过滤器 -> [存在?] -> 查询缓存 -> [命中?] -> 返回数据 | | 否 未命中 | | 拦截请求 查询数据库 -> 回填缓存 ``` #### 2. 实现步骤 **(1) 初始化过滤器** Java示例(使用Guava): ```java BloomFilter<String> filter = BloomFilter.create( Funnels.stringFunnel(UTF_8), 1000000, // 预期元素量 0.01 // 误判率 ); ``` **(2) 数据预热** ```java // 加载数据库已有数据 database.getAllKeys().forEach(key -> filter.put(key)); ``` **(3) 查询拦截** Python示例(使用redisbloom): ```python def get_data(key): if not redis.bf.exists('myFilter', key): return None # 直接拦截 # 继续查询缓存/数据库... ``` #### 3. 参数优化建议 | 元素规模 | 建议位数组大小 | 哈希函数数 | |---------|---------------|-----------| | 100万 | 9.6MB | 7 | | 1000万 | 96MB | 7 | | 1亿 | 960MB | 7 | *基于0.1%误判率计算[^4]* ### 四、Spring Boot整合示例 ```java @Autowired private BloomFilterHelper bloomFilterHelper; // 添加元素 redisBloomFilter.add(bloomFilterHelper, "user_filter", userId); // 查询判断 if(!redisBloomFilter.contains(bloomFilterHelper, "user_filter", userId)){ return Result.error("数据不存在"); } ``` *需配置RedisBloomFilter和BloomFilterHelper[^5]* ### 五、注意事项 1. **数据更新同步**:新增数据时需同步更新布隆过滤器 2. **误判监控**:建议记录误判日志,定期分析误判率 3. **容量规划**:提前预留20%空间余量应对数据增长 4. **冷启动方案**:采用渐进式预热避免服务启动时数据库过载
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值