
视觉SLAM十四讲
文章平均质量分 92
喵喵不爱吃鱼
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
第14讲 SLAM:现在与未来
了解经典SLAM实现方案,通过实验,比较各种SLAM方案的异同,探讨SLAM的未来发展方向。原创 2024-09-26 21:33:02 · 1374 阅读 · 0 评论 -
第13讲 实践:设计SLAM系统
设计一个视觉里程计,理解SLAM软件框架如何搭建,理解视觉里程计设计容易出现的问题以及解决方法。原创 2024-09-26 20:26:20 · 949 阅读 · 0 评论 -
第12讲 建图
地图用途归纳:定位。导航。机器人在地图中进行路径规划,寻找路径,控制自己运动到目标点。需要稠密的地图才可以。避障。需要稠密地图。重建。用于展示,或者用于通信。需要稠密地图。交互。需要机器人对地图有更高层面的任职——语义地图。原创 2024-09-26 17:23:17 · 1000 阅读 · 0 评论 -
第11讲 回环检测
回环检测模块能够给出除了相邻帧的一些是个更加久远的约束。相机经过了同一个地方,采集了相似的数据。回环检测的关键,就是如何有效地检测出相机经过同一个地方这件事。回环检测的意义:关系到我们估计的轨迹和地图在长时间下的正确性。提供了与所有历史数据的关联,还可以利用回环检测进行重定位。原创 2024-09-04 21:58:22 · 607 阅读 · 0 评论 -
第10讲 后端2
主要目标:理解滑动窗口法、位姿图优化、带IMU紧耦合的优化、掌握g2o位姿图。第9讲介绍了以为BA为主的图优化。BA能精确优化每个相机位姿与特征点位置。不过在更大的场景中,大量特征点的存在会严重降低计算效率,导致计算量越来越大,无法实时化。本讲第一部分介绍一种简化的BA:位姿图。原创 2024-09-04 17:04:50 · 1471 阅读 · 0 评论 -
第九讲 后端1(backend)
对x_k-1进行积分,左边是x_k-1多加个条件下的x_k的分布,右边是k-1时刻的分布。分子与x_k无关,可拿掉。后端(Backend)似然可通过观测方程计算。原创 2024-07-29 00:10:07 · 324 阅读 · 0 评论 -
第八讲 视觉里程计2
避免计算和匹配描述子的过程,但要求相机运动较平滑(或采集频率较高)光流是一种描述像素随时间在图像之间运动的方法。目标是求第一个相机到第二个相机的相对位姿变换。和稠密光流(Horn-Schunck光流)。原创 2024-07-24 17:33:12 · 1108 阅读 · 0 评论 -
第七讲 视觉里程计1
图像块的矩通常定义为像素值与坐标的乘积,然后对整个图像区域进行累加。原创 2024-07-05 22:50:52 · 443 阅读 · 0 评论 -
第六讲 非线性优化
拉格朗日乘数法:在优化问题中,拉格朗日乘数法是处理带约束优化问题的一种强大方法。对于不方便直接求解的最小二乘问题,通过迭代方法,从一个初始值出发,不断更新当前的优化变量,使目标函数下降。而在SLAM中实用方法通常是折衷的手段,比如固定一些历史轨迹,仅对当前时刻附近的一些轨迹进行优化,即。在噪声影响下,希望通过带噪声的数据z和u推断位姿x和地图y,这构成了一个。在最优计算时,初始值的设置,SLAM一般会通过ICP、PnP提供初始值。的球中,认为只有在这个球内有效,带上D之后,这个球可以看成一个椭球。原创 2024-05-21 10:44:06 · 1197 阅读 · 0 评论 -
第五讲 相机与图像
空间点P,经过小孔O投影,落在物理成像平面O'-x'-y',成像点为P'。图像的宽度或列数,对应X轴;RGB-D相机的深度图中,记录了各个像素与相机的距离,通常单位为mm,因此采用16位整数(0-65535)记录深度图信息,最大表示65m。视差本身计算比较困难,需要计算左右图像对应关系,只有在图像纹理变化处才计算视差,另外由于计算量的原因,需要用GPU或FPGA来实时计算。彩色图像,有通道概念,计算机中用RGB组合表达任意色彩,对于每个像素,有R、G、B三个数值,每个数值称为一个通道。原创 2024-05-13 19:15:41 · 647 阅读 · 0 评论 -
第四讲 李群与李代数
0、代码运行踩坑记录。原创 2024-05-10 20:31:36 · 426 阅读 · 1 评论 -
第三讲 三维空间刚体运动
特殊欧式群:$SE(3)=\begin{Bmatrix}T=\begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix}\in\Reals^{4\times4}|R\in SO(3),t\in\Reals^3\end{Bmatrix}$向量a在两个坐标系下的坐标为a1,a2,它们之间的关系应该是:$a_1=R_{12}a_2+t_{12}$($R_{12}$代表把坐标系2的向量变换到坐标系1中,$t_{12}$对应的是坐标系1原点指向坐标系2原点的向量。原创 2024-04-30 19:19:56 · 1063 阅读 · 0 评论 -
第二讲 初识SLAM
观测是相机中的像素点,如何表述(第五讲);1、SLAM 两大基本问题:定位、建图(定位和建图相互耦合:精确的定位需要精确的地图;单目:没有深度,必须通过移动相机产生深度(近处物体像运动快,远处物体运动慢),并且无法确定真实尺度。三维空间的运动和结构;相机传感器缺点:消耗更多的计算资源(视频流的解析)、需要在特定条件下才能工作(无遮挡、有纹理)度量地图(强调精确标识地图中物体的位置关系) vs 拓扑地图(强调地图元素之间的关系)度量地图分类:稀疏地图(由路标组成) vs 稠密地图(着重建模所有看到的东西)原创 2024-04-30 19:16:29 · 357 阅读 · 0 评论