试题1:求n^m的的值。n,m均为正整数。
这道题可以用很简单的方法(也就是朴素算法)
#include <iostream>
using namespace std;
int main()
{
int a,b;
while(cin>>a>>b)
{
int ans=1;
for(int i=1;i<=b;i++) ans*=a;
cout<<ans<<'\n';
}
return 0;
}
虽然是O(n)的复杂度,看起来比较高效,但是一般情况下数据都会很大,比如1e10,会超时,so,引进快速幂就很必要了。快速幂算法——可迅速求出a^b。其主要理论依据如下:
1,当b为偶数时,a^b可以转为a^2的b/2次方。
2,当b为奇数时,a^b可以转为a^2的b/2次方,再乘以a。
而a^2的b/2次方,以可以使用上述方式转为a^4的b/4次方再乘以某个数。代码如下:
#include <iostream>
using namespace std;
int n,m;
int poww(int x,int y)
{
int sum=1;
while(y>0)
{
if(y%2==1) sum=sum*x;
x=x*x;
y=y/2;
}
return sum;
}
int main()
{
cin>>n>>m;
cout<<poww(n,m)<<endl;
return 0;
}
快速幂是O(log2N),相较于前面的快了不止一点。
试题2: 求a^b的后两位数。a,b是整数。其实也就是计算a^b%100的值。
a,b较小是可以直接算a^b再取mod。但a,b比较大就得做处理了。
事实上,a*b%m=((a%m)*(b%m))%m (证明略)
代码如下
#include <iostream>
using namespace std;
int poww(int x,int y,int m)
{
int sum=1;
while(y>0)
{
if(y%2==1)
{
sum=sum%m;
x=x%m;
sum=sum*x;
}
x=x%m;
x=x*x;
y=y/2;
}
return sum;
}
int main()
{
int a,b,c;
cin>>a>>b>>c;
cout<<poww(a,b,c)<<endl;
return 0;
}
需注意,由于指数函数是增长相当快,所以很有可能会爆掉int(-2147483648~2147483647)的范围,需根据题意选择 范围。