- 博客(317)
- 资源 (12)
- 收藏
- 关注

原创 c++常用代码(持续更新)
#include<iostream>#include<string>#include<chrono>voidRun(){ for(inti=0;i<1000000000;++i) { }}intmain(){ autobeforeTime=std::chrono::steady_clock::now(); Run(); autoafterTime=std::chrono::steady_.
2021-06-29 10:52:34
20457

原创 python常用程序代码(持续更新收集)
文件夹遍历和文件遍历# 遍历文件夹和文件,返回文件的路径和对应的文件的名称,同时可以根据自己的应用需要进行更改def get_img_file(file_name): imagelist = [] for parent, dirnames, filenames in os.walk(file_name): for filename in filenames: if filename.lower().endswith(('.bmp', '.dib
2021-02-25 16:12:24
8655
1

原创 本科+研究生七年之痒,我的经历希望能给你启发和坚持
总结本应该在功成名就以后才来书写,但是我相信我的未来不是梦,我相信未来一定有一片属于我的天空。(纯属记录一下学生时代的经历,多年后在回顾,会不会感谢这7年的自己呢?值得期待)本科阶段认清篇 2013年参加高考后(发挥失常),感觉自己无望了,但是最后还是上了末尾的二本。进入大学时代后,在大一时,我和其他同学一样,完全放纵了自己,电影不停的看,剧不停的刷,这样过了一学期,这样的生活感觉很无味,在暑假思考了自己的人生,思考自己以后想干什么,会干什么,会不会毕业就失业。深层次的分析...
2020-06-16 22:36:59
8048
43
原创 LangGraph--MCP使用
1. 创建计算相关的mcp : math_mcp_server.py。上面调用方法是直接调用python执行文件,还可以流式调用,后面讲。2. 创建计算体脂率相关的mcp。
2025-07-07 19:45:00
720
原创 LangGraph--基础学习(Subgraphs 子图)
这几个章节,但是我觉得这些都是调试使用的,使用技巧也是中断的概念,所以大家去官网自己学习,我这边直接进入子图学习,为后续的多智能体学习做准备。子图允许您构建具有多个组件的复杂系统,这些组件本身就是图。该函数需要在调用子图之前将输入(父)状态转换为子图状态,并在从节点返回状态更新之前将结果转换回父状态。对于更复杂的系统,您可能希望定义与父图具有。如果您的应用程序是这种情况,则需要定义一个。中的共享状态键(通道)进行通信。的子图(没有共享键)。恢复图形后,将无法访问子图形状态。这将从父图和任何子图流输出。
2025-06-25 23:45:00
1049
原创 LangGraph--基础学习(Human-in-the-loop 人工参与深入学习2)
如何从中断中恢复工作?验证人工输入如果您需要在图本身(而不是在客户端)内验证人类提供的输入,则可以通过在单个节点内使用多个中断调用来实现。
2025-06-25 20:45:00
1111
原创 LangGraph--基础学习(Human-in-the-loop 人工参与深入学习1)
中断通过在特定节点暂停图形,向人类呈现信息,并使用他们的输入恢复图形,来实现人在回路工作流。它对于审批、编辑或收集其他上下文等任务很有用。使用提供人类响应的命令对象恢复图形从上面可以发现Interrupt的参数其实就是发送给客户端提醒用户的,中断返回的结果就是Command命令输入的,即人工参与过程。再看看一个例子是一个特殊的键,如果图形被中断,则在运行图形时将返回该键。在 0.4.0 版本中增加了对invoke和ainvoke中支持。如果你使用的是旧版本,那么你只会在使用stream或astream。
2025-06-24 20:09:09
1483
原创 LangGraph--基础学习(Human-in-the-loop 人工参与循环demo)
简单来说,智能体无法区分内容的好坏,我们设计智能体的人需要考虑到需要用户接收哪些信息,哪些不需要用户接收,或者让用户做判断的,如果我们设计者可以提取判断,这可以通过这个环节进行解决,怎么解决呢?工作流,在自动化流程的任何点都可以进行人工干预。这在大型语言模型(LLM)驱动的应用程序中特别有用,因为在这些应用程序中,模型输出可能需要验证、校正或其他上下文。:LangGraph 在每个步骤后检查图状态,允许执行在定义的节点处无限期暂停。:人类可以在工具执行之前审查,编辑或批准 LLM 请求的工具调用。
2025-06-22 18:37:40
1116
原创 LangGraph--基础学习(memory和持久化)
该代码使用了前面的数据路由模式,实现对话聊天数据的总结和删除,以此控制token量降低成本,具体参考代码,具体模式参考前面的博客else:if summary: # 如果存在summ则让大模型进行总结提取,并进行覆盖else:delete_messages = [RemoveMessage(id=m.id) for m in state["messages"]][:-1] # 删除 除最新一条消息外的所有消息user_input = input("请输入:")break你好,我是zsf。
2025-06-22 17:22:21
1196
原创 LangGraph--基础学习(工具调用)
¶由于中的工具很多我们是用不了的,所以这里我们来封装一个自定义工具,使用高德的天气查询接口来做一个天气查询的工具。高德的天气查询接口文档请查阅基础 API 文档-开发指南-Web服务 API | 高德地图API¶参考 TavilySearchResults 工具的实现以及 LangChain 官方的 tools 文档, 我这里使用继承自BaseTool 的方式来实现。主要的流程包括继承类定义几个属性,name: 工具的名字。
2025-06-21 22:11:24
1773
原创 LangGraph--基础学习(stream 流式调用和使用)
¶values 为每个节点执行完毕以后,State 对象更新以后的值updates 为每个节点执行完毕以后,需要更新的内容或者可以理解为节点返回的内容,但是只包含State 中定义的属性。debug 模式会将节点执行的输入和输出返回messages 模式只会返回大模型的流式输出常用的模式为 updates和values, 如果我们只关心每个节点执行结束以后State 的值,那么需要使用 values 模式,如果想要获取每个节点的返回值,则需要使用 updates。
2025-06-21 20:23:50
1806
原创 LangGraph--结构化输出(.with_structured_output() 方法)
大家还是多了解一下那几个字典,我这边使用deepseek问了一下:在 Pydantic 中,BaseModel和Field是两个核心组件,用于数据验证和设置管理。需要运行时验证→ 用 Pydantic 的BaseModelFieldAnnotated。仅需静态类型检查→ 用TypedDict。需要为类型添加元数据→ 用Annotated。
2025-06-19 19:15:00
1384
原创 LangGraph--Agent常见的模式6(总结)
此工作流程非常适合于无法预测所需子任务的复杂任务(例如,在编码中,需要更改的文件数以及每个文件中更改的性质可能取决于任务)。虽然它在拓扑上相似,但与并行化的主要区别在于它的灵活性 — 子任务不是预定义的,而是由编排器根据特定输入确定的。这两个应用程序都说明了代理如何为需要对话和行动的任务增加最大价值,具有明确的成功标准,启用反馈循环,并集成有意义的人工监督。当需要更高的复杂性时,工作流为定义明确的任务提供可预测性和一致性,而当需要大规模的灵活性和模型驱动的决策时,代理是更好的选择。设身处地为模特着想。
2025-06-18 21:08:47
1450
原创 LangGraph--Agent常见的模式5(Agent:智能体)
随着 LLM 在关键能力方面的成熟,Agent正在生产中出现——理解复杂的输入、参与推理和规划、可靠地使用工具以及从错误中恢复。Agent从来自人类用户的命令或与人类用户的交互式讨论开始他们的工作。一旦任务明确,Agent就会独立计划和工作,并可能返回给人类以获取更多信息或做出判断。在执行过程中,Agent在每个步骤(例如工具调用结果或代码执行)从环境中获取“基本事实”以评估其进度至关重要。然后,Agent可以在检查点或遇到障碍时暂停以获得人工反馈。它们通常只是在循环中使用基于环境反馈的工具的 LLM。
2025-06-18 20:59:41
818
原创 LangGraph--Agent常见的模式4(Evaluator-optimizer :评估器-优化器 )
何时使用此工作流:当我们有明确的评估标准,并且迭代改进能带来可衡量的价值时,这种工作流特别有效。两个良好的匹配迹象是,首先,当人类表达其反馈时,LLM 响应可以明显改进;其次,LLM 可以提供这种反馈。这类似于人类作者在撰写一份完美文档时可能经历的迭代写作过程。在评估器-优化器工作流中,一个 LLM 调用生成响应,而另一个提供评估和反馈,形成循环。
2025-06-18 19:46:33
789
原创 LangGraph--Agent常见的模式3(工作流:Orchestrator-worker)
此工作流程非常适合于无法预测所需子任务的复杂任务(例如,在编码中,需要更改的文件数以及每个文件中更改的性质可能取决于任务)。虽然它在拓扑上相似,但与并行化的主要区别在于它的灵活性 — 子任务不是预定义的,而是由编排器根据特定输入确定的。在 orchestrator-worker 工作流中,中央 LLM 会动态分解任务,将其委派给 worker LLM,并综合其结果。例如:选择一个主题,设计一个章节的报告,让每个 worker 写一个章节。这个例子值得大家好好研究和理解。
2025-06-16 21:49:41
846
原创 LangGraph--Agent常见的模式2(并行、数据路由)
例子:在 joke、story 和 poem 之间路由输入。例如,当您希望一个任务的多视角 RAG 的多查询时)。路由 对输入进行分类并将其定向到专门的后续任务。例子:选择一个主题,创建一个笑话、故事和诗歌。例如,当可以使用不同的提示执行独立任务时。例如,当将问题路由到不同的检索系统时。
2025-06-15 21:59:44
901
原创 LangGraph--Agent常见的模式1(增强型,提示链)
智能体的常见模式一般和框架无关,我们也可以自己写代码实现,但是使用框架可以更好、更快的实现这些模式,而且数据流容易观察,下面就开始。
2025-06-15 20:33:01
885
原创 LangGraph--框架核心思想
谈不上理解多深,langgraph他是一个框架,定义什么样的输入输出数据,交给了我们自己,框架不会去做,当然也有框架的一些参数,这些参数我们直接使用即可,因此该框架的核心就是你是需要做什么事?从上面可以发现,和上面分析是一样的,但是我们最终希望要的是 ['A', 'B', 'C', 'B_2', 'D']就可以了,能否实现呢?从结果可以看到,和我们理解的是一样的,A是一层,b和c是一层,他是等到A添加进去以后(该开始是空列表),在然后把b和c添加进去。A\B\C\B_2\D(这个D是从C这里来的);
2025-06-15 15:26:48
984
原创 LangGraph--设计一个给出标准提示词模板的聊天机器人
创建一个聊天机器人,帮助用户生成提示。它将首先收集用户的需求,然后生成提示(并根据用户输入进行优化)。这些功能被分为两个独立的状态,而 LLM 决定何时在这两个状态之间切换。
2025-06-15 13:14:39
1243
原创 LangGraph--带记忆和工具的聊天机器人
在这一节中,我们成功地为聊天机器人添加了记忆功能,使其能够记住对话历史并提供更连贯的回答。这是通过LangGraph的检查点功能实现的,它允许我们在每次交互后保存图的状态,并在后续交互中恢复该状态。这种能力对于构建真正智能的对话系统至关重要,因为它使AI能够维持上下文并提供个性化的用户体验。这些功能共同构成了LangGraph强大的状态管理能力,为构建复杂的AI应用奠定了基础。具体情况上一篇文章,这里就不啰嗦了,直接代码了。
2025-06-12 23:30:00
1006
原创 LangGraph--搭建官方机器人聊天(带工具的)教程
请设置正确你的deepseek的key,最近无法免费使用了,所以你需要充钱,然后获取key,key就是到官网注册账号,根据这个key进行计费的,所以需要保管好,其他key类似的,不明白的请百度吧,下面将直接上代码了:这里我们导入了必要的库,包括:这行代码会从项目根目录的 文件中加载环境变量,包括我们的 。不懂的仔细百度这个函数和库,学习一下啊其他的代码中都有注释我们成功地增强了聊天机器人,使其具备了使用外部工具的能力。通过集成Tavily搜索API,我们的聊天机器人现在可以:这种增强极大地扩展
2025-06-12 23:00:00
1090
原创 LangGraph--Agent工作流
2.能够使用更小/更弱的模型来执行步骤,仅在规划步骤中使用更大/更好的模型以下演练演示了如何在 LangGraph 中实现这一点。使用LANGSMITH进行数据跟踪,这个需要你注册登录获取key,就可以查看了,我使用的是deepseek,充了钱了,没免费的了。下面展示了如何创建一个“计划并执行”风格的代理。这与典型的 ReAct 风格的代理进行了比较,在该代理中,您一次思考一步。这种“计划并执行”风格代理的优势在于。完成一项特定任务后,您可以重新审视计划并根据需要进行修改。
2025-06-08 20:29:05
1204
原创 opencv 读取3G大图失败,又不想重新编译opencv ,可以如下操作
先到这里:nothings/stb: stb single-file public domain libraries for C/C++下载一个stb_image.h头文件,把其放到工程里,然后添加如下代码:最好是使用stb_img读取内存后转mat,然后立刻clone,然后是否stb的内存,这样就可以使用opencv处理了,点赞收藏呀
2025-04-22 09:23:43
1442
原创 QT--组合框 QComboBox ,微调框 QSpinBox,滑动条 QSlider, 进度条 QProgressBar
QComboBox、QSpinBox、QSlider和QProgressBar是四种常见的控件,它们各自有不同的用途和特性。
2024-10-17 21:00:00
3458
原创 QT--单选按钮(QRadioButton)和复选按钮(QCheckBox)
QRadioButton(单选按钮)用于在一组选项中选择一个。组内的按钮是互斥的。适用于需要用户在多个选项中选择一个的场合。QCheckBox(复选按钮)用于在多个选项中进行独立选择。每个按钮都是独立的,选中一个不会影响其他按钮的状态。适用于需要用户选择多个选项或启用/禁用某些设置的场合。
2024-10-16 23:15:00
4731
原创 QT--文本框 QLineEdit、qtextedit
QLabel用于显示静态文本或图像,不可编辑,适用于需要仅显示信息的场合。QLineEdit用于输入和编辑单行文本,适用于需要用户输入单行数据的场合。QTextEdit用于输入和编辑多行文本,适用于需要用户输入长文本或富文本的场合。这里对QLineEdit进行例子测试。
2024-10-16 22:45:00
4819
原创 QT--Qlabel学习、获取文本和设置文本、文本对齐方式、文本换行、显示图片
QLabel是Qt中的标签类,通常用于显示提示性的文本,也可以显示图像。
2024-10-16 21:00:00
4156
原创 QT--QWidget的使用、获取窗体的几何信息、设置窗口大小、设置窗口固定大小、设置窗口最小大小、设置窗口最大大小、移动窗口、设置窗口标题、设置窗口的icons
通过实现以下的功能进行学习QWidget的相关功能和用法所有窗口类的基类Qt 中有 3 个窗口的基类:QWidget、QMainWindow、QDialog在创建 Qt 工程时,会让我们选择继承自哪一个窗口类其中,QMainWindow、QDialog 都是继承自 QWidge所有控件类的基类Qt 中的控件类(按钮、输入框、单选框等)也属于窗口类它们的基类也是 QWidget;可以内嵌到其他窗口的内部,此时需要给其指定父窗口;可以作为独立的窗口显示,此时不能给其指定父窗口;
2024-10-15 21:00:00
3680
原创 QT--自定义信号槽、信号槽的连接方式、信号槽扩展、一个信号连接两个槽函数、多个信号连接一个槽函数、信号连接信号、断开连接
QObjectQ_OBJECT只有满足了这两个条件才可以正常使用信号槽机制接下来,我们通过一个案例,演示自定义信号槽的使用。案例:“长官” (Commander)发送一个 “冲” (go) 的信号,然后 “士兵" (Soldier)执行“ 战斗” (fight) 的槽函数和soldier.h 和 soldier.cpp。
2024-10-14 19:49:54
3393
转载 QT--标准信号槽
首先看一下什么是事件和信号以 QPushButton 的单击事件为例:按下按钮,会触发 mousePressEvent 事件,然后 QPushButton 会发射 pressed() 信号;松开按钮,会触发 mouseReleaseEvent 事件,然后 QPushButton 会发射 released() 信号和 clicked() 信号常用的事件有很多,比如鼠标的单击和双击事件,鼠标的移动事件,键盘的输入事件等。事件会专门在后边进行讲解。
2024-10-14 19:13:02
2593
原创 opencv--findcontour的实际用法
c++ opencv 对于一张二值化的图片,每个对象的轮廓可能只有父轮廓,也可能有多个子轮廓,希望只获取最外层轮廓和最外层对应的子轮廓,至于内部嵌套的轮廓就不要了这个需求怎么操作呢?
2024-09-06 22:30:00
3013
原创 opencv--使用opencv实现旋转角度的模板匹配
下面的例子是简单的使用opencv 实现的模板匹配流程,其中时间性能和精确度还需要调整,如果直接使用会出问题,所以这个只是例子,根据代码原理可以实现尺度变化的模板匹配和旋转尺度变化同时,具体根据实现的旋转代码进一步实现,但是就结果而言和halcon的模板匹配差距较大,性能更不行,因此仅供参考。
2024-06-06 10:18:07
4320
原创 机器视觉检测--镜头
简单讲镜头就是在其一端收集物体的光线,并将光线在另一端汇聚为实像,并投影到接收面的物体。此时,汇集光线的点称为焦点,镜头中心到焦点的距离称为焦点距离。当镜头为凸镜时,焦点距离将根据镜头的厚度(膨胀)程度不同而各不相同,膨胀程度越大焦点距离越短。
2024-06-03 14:04:52
3247
原创 机器视觉检测--颜色
颜色是通过眼、脑和我们的生活经验所产生的一种对光的视觉效应,我们肉眼所见到的光线,是由波长范围很窄的电磁波产生的,不同波长的电磁波表现为不同的颜色,对色彩的辨认是肉眼受到电磁波辐射能刺激后所引起的一种视觉神经的感觉。颜色具有三个特性,即色相,饱和度和明亮度。简单讲就是光线照到物体,反射到眼中的部分被大脑感知,引起的一种感觉。通过色相(Hue)、饱和度(Saturation)和明亮度(Value)来表示,即我们常说的HSV。当然,颜色有不止一种表示方法,RGB三原色也是另外一种表示方法。
2024-06-03 13:57:49
3223
原创 机器视觉检测--光源
而且,来自工件的光线越远,不能接受到的漫反射光就越多,形成更大的图像对比度和清晰度。当然对于特殊的应用,也有很多种尺寸和形状的定制光源,有配合线扫描相机的线性光源,配合2.5D相机的多方向发光光源,配合贴片检测的多色AOI光源等等。但低角度光源从很小的角度将光线直接照射到工件上,由于光的方向几乎与表面平行,所以表面高度的变化都会改变到CCD 的光路,从而突出变化。和同轴光源的平行照射的理念正好相反,通过从小角度或几乎平行的角度照射LED,可仅突出边缘,轮廓或者表面的缺陷划伤。
2024-06-03 13:56:43
3537
编译DCNv2网络:error: command 'C:\\Program Files\\NVIDIAGPUComputingToolkit\\CUDA\\v1
2020-11-20
Halcon实战视频教程,超人视觉,初级和高级版视频,无密码高清
2020-02-09
很完整的发明专利申请文件完整版模板.rar
2019-11-21
c#联合halcon开发实战教程.txt
2020-02-12
3D视觉、点云、三维重建.txt
2020-02-10
机器视觉光源介绍和镜头介绍.rar
2020-02-10
Xshell 5 Build 1339 + Xftp 5 Build 1235
2020-10-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人