二叉树
特点:
- 每个节点的度最大为2(最多拥有2棵子树)
- 左子树和右子树是有顺序的
- 即使某节点只有一颗子树,也要区分左右子树
性质:
- 非空二叉树的第i层,最多有2的i-1次方个节点(i大于等于1)
- 在高度为h的二叉树上最多有2的h次方-1个结点(h大于等于1)
- 对于任何一颗非空二叉树,如果叶子节点个数为n0,度为2的节点个数为n2,则有:n0=n2+1
真二叉树(Proper Binary Tree)
真二叉树:所有节点的度都要么为0,要么为2
满二叉树(Full Binary Tree)
满二叉树:所有节点的度都要么为0,要么为2。且所有的叶子节点都在最后一层
- 在同样高度的二叉树中,满二叉树的叶子节点数量最多、总节点数量最多
- 满二叉树一定是真二叉树,真二叉树不一定是满二叉树
假设满二叉树的高度为h(h大于等于1):
第i层的节点数量:2的i-1次方
叶子节点数量:2的h-1次方
总节点数量:2的h次方-1
完全二叉树(Complete Binary Tree)
完全二叉树:叶子节点只会出现最后2层,且最后1层的叶子结点都靠左对齐
- 完全二叉树从根结点至倒数第2层是一颗满二叉树
- 满二叉树一定是完全二叉树,完全二叉树不一定是满二叉树
完全二叉树的性质
-
度为1的节点只有左子树
-
度为1的节点要么是1个,要么是0个
-
同样节点数量的二叉树,完全二叉树的高度最小
-
假设完全二叉树的高度为h(h对于等于1):
- 至少有2的h-1次方个节点
- 最多有2的h次方-1个节点
- 总节点数量为n:h=floor(log2n)+1
-
一颗有n个节点的完全二叉树(n>0),从上到下、从左到右对节点从1开始进行编号,对任意第i个节点
- 如果i=1,它是根节点
- 如果i>1,它的父节点编号为 floor(i/2)
- 如果2i小于等于n,它的左子节点编号为2i
- 如果2i>n,它无左子节点
- 如果2i+1小于等于n,它的右子节点编号为2i+1
- 如果2i+1>n,它无右子节点
-
一颗有n个节点的完全二叉树(n>0),从上到下、从左到右对节点从0开始进行编号,对任意第i个节点
- 如果i=0,它是根节点
- 如果i>0,它的父节点编号为 floor((i-1)/2)
- 如果2i+1小于等于n-1,它的左子节点编号为2i+1
- 如果2i+1>n-1,它无左子节点
- 如果2i+2小于等于n-1,它的右子节点编号为2i+2
- 如果2i+2>n-1,它无右子节点