(1)简述零样本学习的定义。
零样本学习(Zero-Shot Learning, ZSL)是一种机器学习方法,模型在没有见过某一类样本的情况下,能够识别或处理该类数据。它通过利用类别之间的语义关系(如属性、描述等)来实现对新类别的推理。例如,模型可以通过学习“马”和“斑马”的描述,识别出“斑马”即使从未见过斑马的图像。
(2)持续学习是不是一种增量学习方法?它的优势是什么?
**持续学习(Continual Learning)**是一种增量学习方法,旨在让模型在不断接收新任务或新数据时,能够持续学习并保留之前学到的知识,而不会遗忘。它的优势包括:
- 避免灾难性遗忘:模型在学习新任务时,能够保留对旧任务的记忆。
- 适应动态环境:适用于数据分布随时间变化的场景。
- 资源高效:无需重新训练整个模型,节省计算资源。
(3)RLAIF与RLHF的区别是什么?
- RLHF(Reinforcement Learning from Human Feedback):通过人类反馈来指导强化学习,优化模型行为。人类提供偏好或评分,模型根据这些反馈调整策略。
- RLAIF(Reinforcement Learning from AI Feedback):使用AI模型生成的反馈代替人类反馈。AI模型模拟人类偏好,提供评分或指导,减少对人类标注的依赖。
区别在于反馈来源:RLHF依赖人类,而RLAIF依赖AI生成的反馈。
(4)常用的分词算法有哪些?
常用的分词算法包括:
- 基于规则的分词:利用词典和规则进行分词,如最大匹配法。
- 基于统计的分词:利用语料库统计信息,如N-gram、隐马尔可夫模型(HMM)。
- 基于机器学习的分词:使用序列标注模型,如CRF、BiLSTM。
- 基于深度学习的分词:使用Transformer、BERT等预训练模型。
(5)Prompt主要包含哪几种设计手段?
Prompt设计的主要手段包括:
- 指令式Prompt:明确告诉模型任务要求,如“翻译以下句子”。
- 示例式Prompt:提供输入输出示例,引导模型生成类似结果。
- 填空式Prompt:设计部分文本,让模型补全,如“中国的首都是____”。
- 上下文式Prompt:提供背景信息,帮助模型理解任务。
- 多轮对话Prompt:通过多轮交互逐步引导模型完成任务。
(6)简述Embedding的具体含义。
Embedding是将离散数据(如单词、类别)映射到连续向量空间的技术。它将高维稀疏数据转换为低维稠密向量,同时保留语义信息。例如,词嵌入(Word Embedding)将单词表示为向量,语义相近的单词在向量空间中距离较近。Embedding广泛应用于自然语言处理、推荐系统等领域。
(7)AI智能体是什么?
AI智能体(AI Agent)是一种能够感知环境、做出决策并执行动作的软件实体。它通过传感器获取环境信息,利用算法(如强化学习、规划)做出决策,并通过执行器与环境交互。AI智能体可以是简单的规则系统,也可以是复杂的深度学习模型,广泛应用于游戏、机器人、自动驾驶等领域。
添加微信免费加入人工智能学习交流群