大模型概述习题

(1)简述零样本学习的定义。

零样本学习(Zero-Shot Learning, ZSL)是一种机器学习方法,模型在没有见过某一类样本的情况下,能够识别或处理该类数据。它通过利用类别之间的语义关系(如属性、描述等)来实现对新类别的推理。例如,模型可以通过学习“马”和“斑马”的描述,识别出“斑马”即使从未见过斑马的图像。

(2)持续学习是不是一种增量学习方法?它的优势是什么?

**持续学习(Continual Learning)**是一种增量学习方法,旨在让模型在不断接收新任务或新数据时,能够持续学习并保留之前学到的知识,而不会遗忘。它的优势包括:

  • 避免灾难性遗忘:模型在学习新任务时,能够保留对旧任务的记忆。
  • 适应动态环境:适用于数据分布随时间变化的场景。
  • 资源高效:无需重新训练整个模型,节省计算资源。

(3)RLAIF与RLHF的区别是什么?

  • RLHF(Reinforcement Learning from Human Feedback):通过人类反馈来指导强化学习,优化模型行为。人类提供偏好或评分,模型根据这些反馈调整策略。
  • RLAIF(Reinforcement Learning from AI Feedback):使用AI模型生成的反馈代替人类反馈。AI模型模拟人类偏好,提供评分或指导,减少对人类标注的依赖。

区别在于反馈来源:RLHF依赖人类,而RLAIF依赖AI生成的反馈。

(4)常用的分词算法有哪些?

常用的分词算法包括:

  • 基于规则的分词:利用词典和规则进行分词,如最大匹配法。
  • 基于统计的分词:利用语料库统计信息,如N-gram、隐马尔可夫模型(HMM)。
  • 基于机器学习的分词:使用序列标注模型,如CRF、BiLSTM。
  • 基于深度学习的分词:使用Transformer、BERT等预训练模型。

(5)Prompt主要包含哪几种设计手段?

Prompt设计的主要手段包括:

  • 指令式Prompt:明确告诉模型任务要求,如“翻译以下句子”。
  • 示例式Prompt:提供输入输出示例,引导模型生成类似结果。
  • 填空式Prompt:设计部分文本,让模型补全,如“中国的首都是____”。
  • 上下文式Prompt:提供背景信息,帮助模型理解任务。
  • 多轮对话Prompt:通过多轮交互逐步引导模型完成任务。

(6)简述Embedding的具体含义。

Embedding是将离散数据(如单词、类别)映射到连续向量空间的技术。它将高维稀疏数据转换为低维稠密向量,同时保留语义信息。例如,词嵌入(Word Embedding)将单词表示为向量,语义相近的单词在向量空间中距离较近。Embedding广泛应用于自然语言处理、推荐系统等领域。

(7)AI智能体是什么?

AI智能体(AI Agent)是一种能够感知环境、做出决策并执行动作的软件实体。它通过传感器获取环境信息,利用算法(如强化学习、规划)做出决策,并通过执行器与环境交互。AI智能体可以是简单的规则系统,也可以是复杂的深度学习模型,广泛应用于游戏、机器人、自动驾驶等领域。

添加微信免费加入人工智能学习交流群

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小旺不正经

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值