Transformer习题

(1) 自注意力机制的特点

  • 并行计算:可同时处理序列中所有位置的关联,避免RNN的时序依赖问题。
  • 长距离依赖建模:直接捕捉序列中任意两个元素的关系,不受距离限制。
  • 动态权重分配:通过查询(Query)、键(Key)、值(Value)机制计算注意力权重,聚焦重要信息。
  • 可解释性:注意力权重可直观显示不同位置的重要性。

(2) 位置编码的作用

  • 为输入序列的每个位置添加位置信息,弥补自注意力机制本身不具备位置感知能力的缺陷(因自注意力对输入顺序不敏感)。
  • 常用正弦/余弦函数或可学习参数生成编码,确保模型能区分不同位置的词元。

(3) Transformers库主要提供的模型类别(以Hugging Face库为例):

  • 自编码模型(Autoencoder):如BERT、RoBERTa,适用于掩码语言建模、文本分类等任务。
  • 自回归模型(Autoregressive):如GPT系列,用于生成任务。
  • 序列到序列模型(Seq2Seq):如BART、T5,支持翻译、摘要等任务。
  • 视觉模型(Vision):如ViT、Swin Transformer,处理图像分类等任务。
  • 多模态模型(Multimodal):如CLIP、DALL-E,结合文本与图像数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小旺不正经

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值