欢迎关注我的公众号 [极智视界],获取我的更多经验分享
大家好,我是极智视界,本文来介绍一下 输入图片BatchSize和分辨率对模型计算量和参数量的影响。
邀您加入我的知识星球「极智视界」,星球内有超多好玩的项目实战源码下载,链接:https://t.zsxq.com/0aiNxERDq
在深度学习中,模型参数量和计算量是两个重要的考量因素。模型参数量指的是模型中的参数数量,对应于数据结构中空间复杂度的概念。而计算量则对应于时间复杂度的概念,与网络执行时间的长短有关。计算量的衡量指标主要是 FLOPs,也即浮点运算次数。这里有个坑,一定要区分开 FLOPs 和 FLOPS 的概念,FLOPs 是指 Floating-point Operations,即浮点运算次数,可以用来描述模型的计算量或者模型的时间复杂度;而 FLOPS 是指 Floating-point Operations Per Second,即每秒执行的浮点运算次数,一般是用来衡量芯片算力的。一个是量、一个是速度,需要分辨清楚。
拿芯片的算力 FLOPS 来说,按照数量级的不同,又有 MFLOPS、GFLOPS、TFLOPS 等之分 (同理会有 MFLOPs、GFLOPs...),然后如果是 int8/int4 量化的算力又有 TOPS 之类,如下