极智AI | 输入图片BatchSize和分辨率对模型计算量和参数量的影响

本文探讨了输入图片的BatchSize和分辨率对深度学习模型计算量和参数量的影响。尽管模型的参数量与输入无关保持不变,计算量则与输入图片的大小和批次大小直接相关。通过使用thop、ptflops和pytorch_model_summary库,可以方便地统计模型的计算量和参数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的公众号 [极智视界],获取我的更多经验分享

大家好,我是极智视界,本文来介绍一下 输入图片BatchSize和分辨率对模型计算量和参数量的影响。

邀您加入我的知识星球「极智视界」,星球内有超多好玩的项目实战源码下载,链接:https://t.zsxq.com/0aiNxERDq

在深度学习中,模型参数量和计算量是两个重要的考量因素。模型参数量指的是模型中的参数数量,对应于数据结构中空间复杂度的概念。而计算量则对应于时间复杂度的概念,与网络执行时间的长短有关。计算量的衡量指标主要是 FLOPs,也即浮点运算次数。这里有个坑,一定要区分开 FLOPs 和 FLOPS 的概念,FLOPs 是指 Floating-point Operations,即浮点运算次数,可以用来描述模型的计算量或者模型的时间复杂度;而 FLOPS 是指 Floating-point Operations Per Second,即每秒执行的浮点运算次数,一般是用来衡量芯片算力的。一个是量、一个是速度,需要分辨清楚。

拿芯片的算力 FLOPS 来说,按照数量级的不同,又有 MFLOPS、GFLOPS、TFLOPS 等之分 (同理会有 MFLOPs、GFLOPs...),然后如果是 int8/int4 量化的算力又有 TOPS 之类,如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极智视界

你的支持 是我持续创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值