
pandas 学习笔记
pandas 学习笔记
轮子去哪儿了
研究生在读:https://github.com/yangzhaonan18
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
pandas 8 画图
pandas 8 画图 from __future__ import print_function import pandas as pd import numpy as np import matplotlib.pyplot as plt # plot data Series 构造1列数据,data.plot() # Series 构造1列数据 np.random.seed(1) d...原创 2019-02-26 14:55:00 · 202 阅读 · 0 评论 -
pandas 6 合并数据 concat, append 垂直合并,数据会变高/长
pandas 6 合并数据 concat, append 垂直合并,数据会变高/长 from __future__ import print_function import pandas as pd import numpy as np concatenating # ignore index df1 = pd.DataFrame(np.ones((3,4))*0, columns=['...原创 2019-02-26 14:56:00 · 2563 阅读 · 0 评论 -
pandas 7 合并 merge 水平合并,数据会变宽
pandas 7 合并 merge 水平合并,数据会变宽 pd.merge( df1, df2, on=['key1', 'key2'], left_index=True, right_index=True, how=['left', 'right', 'outer', 'inner'], indicator='indicator_column', suffixes=['_boy', '_gir...原创 2019-02-26 14:29:00 · 579 阅读 · 0 评论 -
pandas 5 导入导出 读取保存 I/O API
pandas 5 导入导出 读取保存 I/O API 官网The pandas I/O API pickle格式是python自带的 from __future__ import print_function import pandas as pd data = pd.read_csv('student.csv') # 读取数据 read from print(data) data....原创 2019-02-26 14:55:00 · 167 阅读 · 0 评论 -
pandas 4 处理缺失数据nan
pandas 4 处理缺失数据nan from __future__ import print_function import pandas as pd import numpy as np np.random.seed(1) dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.arange(24).reshap...原创 2019-02-26 14:55:00 · 457 阅读 · 0 评论 -
pandas 3 设置值
pandas 3 设置值 from __future__ import print_function import pandas as pd import numpy as np np.random.seed(1) dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.random.randn(6,4), inde...原创 2019-02-26 14:55:00 · 215 阅读 · 0 评论 -
pandas 2 选择数据
pandas 2 选择数据 from __future__ import print_function import pandas as pd import numpy as np np.random.seed(1) dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.random.randn(6, 4), in...原创 2019-02-26 14:55:00 · 274 阅读 · 0 评论 -
pandas 1 基本介绍
pandas 1 基本介绍 import numpy as np import pandas as pd pd.Series() 构造数据 s = pd.Series([1, 3, 5, np.nan, 44, 1]) print(s) # 0 1.0 # 1 3.0 # 2 5.0 # 3 NaN # 4 44.0 # 5 1.0 # ...原创 2019-02-26 14:55:00 · 315 阅读 · 0 评论