文章目录
总结
一、回溯算法理论基础
纯暴力搜索,for循环嵌套
组合问题:N个数里面按一定规则找出k个数的集合。1234能组合出多少2个数字的组合
切割问题:一个字符串按一定规则有几种切割方式
子集问题:一个N个数的集合里有多少符合条件的子集
排列问题:N个数按一定规则全排列,有几种排列方式。与组合不同,强调了元素的顺序
棋盘问题:N皇后,解数独等等
如何理解回溯法?
所以回溯法都可以抽象为树形结构,N叉树
回溯法的模板
- void backtracking(),返回值void,参数一般比较多
- 回溯函数终止条件
if (终止条件) {
存放结果;
return;
}
- 回溯搜索的遍历过程(单层搜索的逻辑)
for (本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
综上,回溯算法的模板
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
二、77. 组合
-
自己看到题目的第一想法
-
看完题解之后的想法
-
自己实现过程中遇到的问题总结
- 取2的时候只能在3,4中取,是因为如果在1取,【1,2】和【2,1】就重复了,因为求的是组合问题。
回溯树形图:
2.第一步确定参数:用一个一维数组保存path,二维数组保存结果集。还有n,k。最重要的是有一个startindex,记录从哪开始取。
第二步终止条件:path有两个数
第三步单层逻辑:for循环从startindex开始。题目说[1, n],所以for循环中startindex是1.
LinkedList<Integer> list = new LinkedList<>();
List<List<Integer>> result = new LinkedList<>();
//LinkedList<LinkedList<Integer>> result = new LinkedList<>();
public List<List<Integer>> combine(int n, int k) {
backtracking(n,k,1);
return result;
}
public void backtracking(int n,int k,int startIndex){
if(list.size()==k){
result.add(new LinkedList<>(list));
return;
}
for(int i=startIndex;i<=n;i++){
list.add(i);
// backtracking(n,k,startIndex+1);
backtracking(n,k,i+1);//?
list.removeLast();
}
}
for循环其实是在取1,取2,取3,取4中取值
for中的逻辑是逐渐像深层遍历。
20分钟