- 博客(583)
- 资源 (14)
- 收藏
- 关注

原创 txtai系列教程
txtai系列教程翻译自 : https://dev.to/neuml/export-and-run-models-with-onnx-fof1.txtai 初识2.使用 Hugging Face 数据集构建 Embeddings 索引3.从数据源构建嵌入索引4.将语义搜索添加到 Elasticsearch5.使用 txtai 进行抽取式 QA6.使用 Elasticsearch 进行抽取式 QA7.使用零样本分类应用标签8.txtai API 库9.构建抽象文本摘要10.从文档中提
2021-12-17 13:20:10
2081
1
转载 基于知识图谱与大语言模型的中药方剂智能生成TCM-KLLaMA
《基于知识图谱与大语言模型的中药方剂智能生成TCM-KLLaMA》研究提出了一种创新方法,通过构建中医症状知识图谱(涵盖症状、舌象和脉象信息)并开发SMKI机制,有效提升了大语言模型在中药方剂推荐中的准确性。该方法采用知识图谱与模糊检索相结合的技术,能够识别输入中的同义表达或错误信息,并通过改进模型输出层和训练损失函数,显著减少了无关或错误药物的生成。实验结果表明,SMKI机制在相似度阈值优化和未知症状处理方面表现出色,使TCM-KLLaMA模型在方剂生成任务中取得了优于基准模型的性能表现,为智能化中医诊疗
2025-07-03 09:30:11
47
原创 2025-CODEI/O: Condensing Reasoning Patterns via Code Input-Output Prediction
本文提出了CODEI/O方法,通过将代码转换为输入-输出预测任务,系统性地提取程序中的推理模式。该方法让语言模型用自然语言预测代码的输入/输出,解耦推理逻辑与代码语法,同时保持程序严谨性。实验表明,CODEI/O在符号、科学、数学等多样化推理任务中均取得平衡提升,且性能随训练数据规模稳定增长。多轮修订版本CODEI/O++进一步优化了模型表现,证明了该方法的有效性和泛化能力。
2025-06-22 00:12:37
682
原创 2025-Open thougths DATA RECIPES FOR REASONING MODELS
《OpenThinker-32B:数据驱动的开源推理新SOTA》摘要 斯坦福与UC伯克利等机构联合推出开源推理模型OpenThinker-32B,性能媲美DeepSeek-R1-32B。研究提出系统化数据构建方法,通过四代数据集迭代(17K→1.2M),采用严格验证和质量过滤策略。核心创新包括:1)构建多领域OpenThoughts3-1M数据集;2)优化数据管道(问题混合、LLM过滤、答案多样性);3)发现QwQ-32B作为适配性最佳教师模型。实验显示,该方法在数学(AIME)、代码(GPQA)等任务中表
2025-06-20 11:36:22
813
原创 2023-ICLR-ReAct 首次结合Thought和Action提升大模型解决问题的能力
摘要:普林斯顿大学与Google Research合作提出ReAct框架,将语言模型的推理与行动能力相结合。该框架通过交替生成推理痕迹(Thought)和任务行动(Action)提升模型在复杂任务中的表现,并在HotpotQA和FEVER基准测试中验证其有效性。实验对比了标准提示、思想链(CoT)等基线方法,结果表明ReAct能显著提升任务解决能力。研究还开源了代码,并在LangChain中实现相关Prompt模板,通过工具调用(如搜索、计算)展示其实际应用效果。该方法为增强LLM的interpretabi
2025-05-29 11:41:18
567
原创 Agent 的7 中设计模式
代理” 有多种定义。一些客户将代理定义为完全自主的系统,能够在较长时间内独立运行,使用各种工具完成复杂任务。另一些客户则用该术语来描述遵循预定义工作流程的更具规范性的实现。在 Anthropic,我们将所有这些变体归类为代理系统,但在工作流程和代理之间划出了一个重要的架构区别:工作流是通过预定义代码路径协调 LLM 和工具的系统。另一方面,代理是 LLM 动态指导其自身流程和工具使用的系统,可以控制其完成任务的方式。下面,我们将详细探讨这两种代理系统。
2025-05-28 13:56:51
777
1
转载 向量数据库weaviate
对应AUTHENTICATION_APIKEY_ALLOWED_KEYS中的密钥# 注意:此处只需要密钥即可,不需要用户名称连接的本地部署的,可以连接服务器上部署的向量服务器。http_host和grpc_host替换服务器地址,两个是一样的5.注意事项如果你翻墙了或者开了代理,报502,连接失败。开启代理解决办法:Clash Verge点击系统代理,代理绕过里面添加192.168.*(代理里面使用规则,不要使用全球)
2024-11-08 10:14:07
538
1
原创 大型语言模型的生物医学知识图优化提示生成
KG-RAG框架,较好的结合了生物医学知识图谱SPOKE和LLM的优势。SPOKE是一个开放知识图谱,提供数据下载和开放API,整合了超过40个公开可用的生物医学知识源,涵盖了基因、蛋白质、药物、化合物、疾病等概念和概念之间的关系,可以为LLM提供一个强大的医疗领域知识。研究人员对KG-RAG框架进行了广泛的测试,包括单跳和双跳提示、药物再利用查询、生物医学真假问题和多项选择题。结果表明,KG-RAG显著提高了LLMs的性能,特别是在具有挑战性的多项选择题数据集上,LLMs都取得了较大的提升。
2024-07-21 12:28:57
1395
原创 中药垂直大模型汇总
ShenNong-TCM由华东师范大学计算机科学与技术学院智能知识管理与服务团队完成,旨在推动大型语言模型在中医药领域的发展和落地,提升大型语言模型的在中医药方面的知识与回答医学咨询的能力,同时推动大模型赋能中医药传承。
2024-05-22 17:18:51
5377
转载 Supervisor进程管理
https://blog.csdn.net/lly1122334/article/details/122713267
2023-12-24 20:49:36
389
原创 2023-ICLR-Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning
2023-ICLR-Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning
2023-11-01 11:04:58
403
转载 2023-arxiv-LLaMA-Adapter Efficient Fine-tuning of Language Models with Zero-init Attention
2023-arxiv-LLaMA-Adapter Efficient Fine-tuning of Language Models with Zero-init Attention
2023-11-01 10:19:08
292
转载 2022-arxiv-Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning
少样本参数高效微调比上下文学习更好、更便宜
2023-10-31 18:01:11
431
原创 2021-arxiv-LoRA Low-Rank Adaptation of Large Language Models
2021-arxiv-LoRA Low-Rank Adaptation of Large Language Models
2023-10-30 11:10:59
593
原创 2022-arxiv-P-Tuning v2 Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and
2022-arxiv-P-Tuning v2 Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and
2023-10-30 09:53:20
168
BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV
2022-05-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人