c语言一行黑白相间的瓷砖,磁砖样式——第八届蓝桥杯C语言B组(国赛)第二题...

本文探讨了一个关于磁砖排列组合的问题,原始问题是计算3*10大小的装饰墙使用2*2瓷砖的不同贴法。作者首先尝试通过暴力枚举和条件判断来解决,但在处理较大规模数据时遇到困难。随后,作者提出了采用深度优先搜索(DFS)的方法,通过在每个空格处选择4种可能的贴砖方式(横铺1号砖、横铺2号砖、竖铺1号砖、竖铺2号砖),并检查2*2方格的相邻条件来避免重复颜色。最终,代码实现能够正确计算出3*10格子的贴砖方案数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原创

标题:磁砖样式

小明家的一面装饰墙原来是 3*10 的小方格。

现在手头有一批刚好能盖住2个小方格的长方形瓷砖。

瓷砖只有两种颜色:黄色和橙色。

小明想知道,对于这么简陋的原料,可以贴出多少种不同的花样来。

小明有个小小的强迫症:忍受不了任何2*2的小格子是同一种颜色。

(瓷砖不能切割,不能重叠,也不能只铺一部分。另外,只考虑组合图案,请忽略瓷砖的拼缝)

显然,对于 2*3 个小格子来说,口算都可以知道:一共10种贴法,如【p1.png所示】

但对于 3*10 的格子呢?肯定是个不小的数目,请你利用计算机的威力算出该数字。

注意:你需要提交的是一个整数,不要填写任何多余的内容(比如:说明性文字)

06525c5ece90b464dd501a7e3bc6c900.png

一开始的想法是在数组里面枚举出全部的情况组合,比如2*3的方格,用0/1代表两种颜色;

那么一共会有pow(2,6)=64种情况,然后用3个判断条件筛选出符合要求的贴砖方式:

1:   数码0/1有偶数个;

2:任意2*2的方格的数码不能相同;

3:任意一个方格在其相邻的(上/下/左/右)方格至少有一个相同的数码;

代码如下:

1 #include

2

3 int arr[3][6]={0};

4 int count=0;

5

6 int Judge(){

7 int i=0;

8 int j=0;

9 //条件1:偶数个0和1

10 int count_zero=0; //存储0/1个数

11 int count_one=0;

12 for(i=0;i<=2;i++){

13 for(j=0;j<=5;j++){

14 if(arr[i][j]==0){

15 count_zero++;

16 }

17 else{

18 count_one++;

19 }

20 }

21 }

22 if(count_zero%2!=0 || count_one%2!=0){

23 return 0;

24 }

25 //条件2:2*2方格的数字都不相同

26 int x=0;

27 int y=0;

28 for(x=0;x<=1;x++){ //循环至行数-1

29 for(y=0;y<=4;y++){ //循环至列数-1

30 int a=arr[x][y];

31 int b=arr[x][y+1];

32 int c=arr[x+1][y];

33 int d=arr[x+1][y+1];

34 if(a==b && a==c && a==d && b==c && b==d && c==d)

35 return 0;

36 }

37 }

38 //条件3:每个数的相邻位置要有与其相同的数

39 for(i=0;i<=2;i++){

40 for(j=0;j<=5;j++){

41 int value=arr[i][j];

42 if(i-1>=0){ //上

43 if(value==arr[i-1][j]){

44 continue;

45 }

46 }

47 if(i+1<=1){ //下

48 if(value==arr[i+1][j]){

49 continue;

50 }

51 }

52 if(j-1>=0){ //左

53 if(value==arr[i][j-1]){

54 continue;

55 }

56 }

57 if(j+1<=2){ //右

58 if(value==arr[i][j+1]){

59 continue;

60 }

61 else{ //没有相邻的数码

62 return 0;

63 }

64 }

65 }

66 }

67 return 1;

68 }

69

70 void Style(int i,int j){ //i行、j列

71

72 if(i==2 && j==6){ //得到一种贴砖方式

73

74 if(Judge()==1){

75 /*

76 int a=0; //输出

77 int b=0;

78 for(a=0;a<=1;a++){

79 for(b=0;b<=2;b++){

80 printf("%d ",arr[a][b]);

81 if(b==2){

82 printf("\n");

83 }

84 }

85 }

86 */

87 count++;

88 }

89 return;

90 }

91

92 if(j==6){

93 i++;

94 j=0;

95 }

96 int v=0;

97 for(v=0;v<=1;v++){ //每个位置0-1循环

98 arr[i][j]=v;

99 Style(i,j+1);

100 arr[i][j]=0; //回溯

101 }

102 }

103

104 int main(){

105 Style(0,0);

106 printf("%d",count);

107 return 0;

108 }

只检验了2*3、3*6的方格的样例,2*3的样例输出了正确的答案,3*6的输出错误。

3*10的数据量太大跑不出来了。

上面的3个控制条件太少,像

1 0 1 1 0 0

1 1 0 0 0 1

1 0 1 1 0 1

这样的贴砖方式能通过条件但却是不符合要求的,因为这种方式太过于暴力,所以没有继续改进。

此题应该通过DFS解决:

3*10的方格,每个空方格都可以有4种贴法:(我们以1/2号定义两种颜色的砖)

横着贴1号砖、横着贴2号砖、竖着贴1号砖、竖着贴2号砖

所以我们用DFS搜索每块空砖的这4种贴法即可。

1 #include

2 #define row 3

3 #define rank 10

4

5 int count=0;

6 int arr[row+2][rank+2]={0}; //--------------①

7

8 int Judge(int x,int y){ //每一块砖的左上、右上、左下、右下四个2*2方格

9 if(arr[x][y]==arr[x-1][y] && arr[x][y]==arr[x-1][y-1] && arr[x][y]==arr[x][y-1]){ //左上

10 return 0;

11 }

12 if(arr[x][y]==arr[x-1][y] && arr[x][y]==arr[x-1][y+1] && arr[x][y]==arr[x][y+1]){ //右上

13 return 0;

14 }

15 if(arr[x][y]==arr[x][y-1] && arr[x][y]==arr[x+1][y-1] && arr[x][y]==arr[x+1][y]){ //左下

16 return 0;

17 }

18 if(arr[x][y]==arr[x][y+1] && arr[x][y]==arr[x+1][y] && arr[x][y]==arr[x+1][y+1]){ //右下

19 return 0;

20 }

21 return 1;

22 }

23

24 void dfs(int x,int y){

25 if(x==3 && y==11){

26 count++;

27 return;

28 }

29 if(y==11){

30 dfs(x+1,1);

31 return;

32 }

33 if(arr[x][y]==-1){ //4种铺法可以任意顺序

34 if(arr[x][y+1]==-1){ // 横铺1

35 arr[x][y]=1;

36 arr[x][y+1]=1;

37 if(Judge(x,y)==1){

38 dfs(x,y+1);

39 }

40 arr[x][y]=-1;

41 arr[x][y+1]=-1;

42 }

43 if(arr[x+1][y]==-1){ // 竖铺2

44 arr[x][y]=2;

45 arr[x+1][y]=2;

46 if(Judge(x,y)==1){

47 dfs(x,y+1);

48 }

49 arr[x][y]=-1;

50 arr[x+1][y]=-1;

51 }

52 if(arr[x+1][y]==-1){ // 竖铺1

53 arr[x][y]=1;

54 arr[x+1][y]=1;

55 if(Judge(x,y)==1){

56 dfs(x,y+1);

57 }

58 arr[x][y]=-1;

59 arr[x+1][y]=-1;

60 }

61 if(arr[x][y+1]==-1){ // 横铺2

62 arr[x][y]=2;

63 arr[x][y+1]=2;

64 if(Judge(x,y)==1){

65 dfs(x,y+1);

66 }

67 arr[x][y]=-1;

68 arr[x][y+1]=-1;

69 }

70 }

71

72 else{

73 dfs(x,y+1);

74 }

75 }

76

77 int main(){

78 int i=0;

79 int j=0;

80 for(i=1;i<=3;i++){ //-------------②

81 for(j=1;j<=10;j++){

82 arr[i][j]=-1;

83 }

84 }

85 dfs(1,1);

86 printf("%d",count);

87 return 0;

88 }

对代码中①/②的解释:

①:申请5*12的空间为方便对3*10的方格进行2*2的判断

②:只能对3*10的方格进行赋值,保证第0/4行、第0/11列(即外围一圈)的值和里面3*10的方格不同,具有很大的便利性(请大家慢慢体会)。

答案:114434

3:38:00

2018-05-07

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值