rdd数据存内存 数据量_RDD关键性能考量之 内存管理

本文探讨了Spark大数据分析中的关键性能考量,重点关注内存管理。内存主要用于RDD缓存、数据混洗与聚合的缓存以及用户代码。Spark通过spark.stroage.memoryFraction和spark.shuffle.memoryFraction参数控制这两部分的内存比例。当用户代码占用大量内存时,可以调整这些比例以避免内存不足。此外,使用MEMORY_AND_DISK存储等级和序列化持久化可以优化缓存行为,减少垃圾回收带来的影响,提高应用稳定性。适时调整缓存策略和利用序列化能有效提升性能和减少计算成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Spark快速大数据分析》

8.4.2 关键性能考量   内存管理

内存对Spark来说哟几个不同的用途,理解并调优Spark的内存使用方法

可以帮助优化Spark应用。在各个执行器进程中,内存有一下所列集中用途。

RDD存储

当调用RDD的persist()或cache()方法时,这个RDD的分区会被存储到缓存区中。

Spark会根据spark.stroage.memoryFraction限制用来缓存的内存占整个JVM堆空间的比例大小。

如果超出限制,旧的分区数据会被移出内存。

数据混洗与聚合的缓存区

当进行数据混洗操作时,Spark会创建出一些中间缓存区来存储数据混洗的输出数据。

这些缓存区用来存储聚合操作的中间结果,以及数据混洗操作中直接输出的部分缓存数据。

Spark会尝试根据spark.shuffle.memoryFraction限定这种缓存区内存占总内存的比例。

用户代码

Spark可以执行任意的用户代码,所以用户的函数可以自行申请大量内存。

例如,一个用户应用分配了巨大的数组或者其他对象,那这些都会占用总的内存。

用户代码可以访问JVM堆空间中分配给RDD存储和数据混洗存储以为的全部剩余空间。

默认情况下Sparkhi使用60%的空间来存储RDD,20%存储数据混洗操作产生的数据,

剩下的20%留给用户程序。用户可以自行调节这些选项来追求更好的性能表现。如果用户代码

上分配了大量的对象,那么降低RDD存储和数据混洗存储所占用的空间可以有效避免内存不足的情况。

除了调整内存各区域比例,还可以为一些工作负载改进缓存行为的某些要素。Spark默认的cache()操作

以MEMORY_ONLY的存储等级持久化数据。这意味着如果缓存新的RDD分区时空间不够,旧的分区就会直接被删除。

当用到这些分区数据时,再进行重新计算。所以有时以MONORY_AND_DISK的存储等级调用persist()方法会获得更好的

效果,因为i在这种存储等级下,内存中放不下的旧的分区会被写入磁盘,当再次需要用到的时候再从磁盘上

读取回来。这样的代价有可能比重新计算各分区要低很多,也可以带来更稳定的性能表现。当RDD分区的重算代价很大时,

这种设置尤其有用。

对于默认缓存策略的另一个改进是缓存序列化后的对象而非直接缓存。可以通过MEMORY_ONLY_SER 或者 MEMORY_AND_DISK_SER

的存储等级来实现这一点。缓存序列化后的对象会使缓存过程变慢,因为序列化对象也会消耗一些代价,

不过这可以显著减少JVM的垃圾回收时间,因为很多独立的记录现在可以作为单个序列化的缓存而存储。

垃圾回收的代价与堆里的对象数目相关,而不是和数据的字节数相关。这种缓存方式会把大量的对象

序列化为一个巨大的缓存区对象。如果需要以对象的形式缓存大量数据,或者是注意到了长时间的垃圾回收暂停,

可以考虑配置这个选项。这些暂停时间可以在应用界面中显示的每个任务的垃圾回收时间那一栏看到。

### RFM模型概述 RFM模型是一种广泛应用于客户细分和营销策略优化的方法,其核心基于三个关键指标:Recency(最近一次消费时间)、Frequency(消费频率)以及Monetary Value(消费金额)。该模型通过对这三个维度的量化分析,帮助企业识别高价值客户群体并制定针对性的市场活动。 在实际应用中,RFM模型通常涉及大量的历史交易数据处理与分析。因此,在实施过程中需要考虑内存管理和高效的数据分析技术来支持大规模数据集的操作[^1]。 ### 内存管理的重要性 对于大数据环境下的RFM模型实现而言,合理的内存分配至关重要。以下是几种主要类型的内存及其用途: - **Reserved Memory**: Spark内部对象,保障系统运行稳定性。 - **User Memory**: 用户可以自由支配这部分空间以保自定义数据结构,适合储中间计算结果或临时表。 - **Execution Memory**: 主要服务于Shuffle、Join等操作所需的资源需求。 - **Storage Memory**: 提供足够的容量给RDD缓存及广播变量,减少重复读取磁盘带来的性能损失。 合理规划这些区域的比例能够有效提升整体作业效率,并降低因内存不足引发的任务失败风险[^1]。 ### 数据分析方法论 为了更好地利用RFM模型进行商业决策支持,可以从以下几个方面着手开展工作: #### 数据预处理阶段 此环节需清理原始记录中在的缺失值、异常值等问题;同时依据业务逻辑设定各字段的具体含义边界条件。例如,“最近购买日期”的界定方式可能会影响最终分组效果。 #### 特征工程设计 根据企业实际情况调整权重参数设置或者引入额外辅助因子扩展传统意义上的三要素体系之外的信息维度。比如加入地理位置因素考量消费者行为模式是否在区域性偏好特征等等。 #### 可视化展示成果 借助图表形式直观呈现各类人群画像特点分布状况以便高层管理者快速理解洞察结论进而采取行动措施改善经营业绩表现情况等方面发挥重要作用。 下面是一个简单的Python代码示例演示如何加载销售订单明细表并通过Pandas库完成基本统计汇总功能: ```python import pandas as pd # 加载数据 df = pd.read_csv('sales_orders.csv') # 计算每名客户的R/F/M得分 rfm_df = df.groupby('CustomerID').agg({ 'OrderDate': lambda x: (pd.to_datetime('today') - x.max()).days, 'InvoiceNo': 'count', 'TotalAmount': 'sum' }).rename(columns={ 'OrderDate': 'Recency', 'InvoiceNo': 'Frequency', 'TotalAmount': 'MonetaryValue'}) print(rfm_df.head()) ``` ### 结合Impala加速查询响应速度 当面临海量级别的事务日志文件时,仅依靠单机版工具显然难以满足时效性要求。此时可选用Cloudera Impala作为替代方案之一,它具备如下优势特性值得推荐尝试使用: - 不依赖MapReduce机制而是改用更高效的执行计划树结构; - 支持SQL-like语法兼容现有ETL流程无需大幅改动原有脚本内容即可无缝迁移过去继续沿用下去; - 自带错误恢复机制能够在部分节点失效情况下仍然保持正常运转不至于完全中断整个批次加工进度条卡住不动的现象发生. 通过CLI接口提交命令行指令调用后台服务端组件协同合作共同完成复杂报表生成功能模块开发任务目标达成率更高用户体验感更强.[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值