深度学习编程笔记:kears基础3:模型保存与加载

网络参数保存与加载

在这里插入图片描述

  1. model有管理参数的功能,所以里面参数的数量它都是知道的,我们可以直接提供save_weights功能后,可以直接将中间的每一个参数都保存在后面路径中。
  2. 加载过程就直接先创建一个网络,这里把步骤缩写了,创建网络的过程必须和原来网络创建过程一样,然后将保存的数据重载。

实验代码

import  tensorflow as tf
from    tensorflow.keras import datasets, layers, optimizers, Sequential, metrics


def preprocess(x, y):
    """
    x is a simple image, not a batch
    """
    x = tf.cast(x, dtype=tf.float32) / 255.
    x = tf.reshape(x, [28*28])
    y = tf.cast(y, dtype=tf.int32)
    y = tf.one_hot(y, depth=10)
    return x,y


batchsz = 128
(x, y), (x_val, y_val) = datasets.mnist.load_data()
print('datasets:', x.shape, y.shape, x.min(), x.max())



db = tf.data.Dataset.from_tensor_slices((x,y))
db = db.map(preprocess).shuffle(60000).batch(batchsz)
ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val))
ds_val = ds_val.map(preprocess).batch(batchsz) 

sample = next(iter(db))
print(sample[0].shape, sample[1].shape)


network = Sequential([layers.Dense(256, activation='relu'),
                     layers.Dense(128, activation='relu'),
                     layers.Dense(64, activation='relu'),
                     layers.Dense(32, activation='relu'),
                     layers.Dense(10)])
network.build(input_shape=(None, 28*28))
network.summary()




network.compile(optimizer=optimizers.Adam(lr=0.01),
		loss=tf.losses.CategoricalCrossentropy(from_logits=True),
		metrics=['accuracy']
	)

network.fit(db, epochs=3, validation_data=ds_val, validation_freq=2)
 
network.evaluate(ds_val)

network.save_weights('weights.ckpt')
print('saved weights.')
del network

network = Sequential([layers.Dense(256, activation='relu'),
                     layers.Dense(128, activation='relu'),
                     layers.Dense(64, activation='relu'),
                     layers.Dense(32, activation='relu'),
                     layers.Dense(10)])
network.compile(optimizer=optimizers.Adam(lr=0.01),
		loss=tf.losses.CategoricalCrossentropy(from_logits=True),
		metrics=['accuracy']
	)
network.load_weights('weights.ckpt')
print('loaded weights!')
network.evaluate(ds_val)
  1. 步骤大概就是先训练,然后保存参数,删除原来网络,然后创建一个和原来一样的网络,把参数重载,然后进行测试

网络的保存与加载

在这里插入图片描述

这个保存了网络的全部信息,不需要新建和原来一样的网络。

模型的部署

在这里插入图片描述

  1. 这里save的模型可以给别的语言使用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值