网络参数保存与加载
- model有管理参数的功能,所以里面参数的数量它都是知道的,我们可以直接提供save_weights功能后,可以直接将中间的每一个参数都保存在后面路径中。
- 加载过程就直接先创建一个网络,这里把步骤缩写了,创建网络的过程必须和原来网络创建过程一样,然后将保存的数据重载。
实验代码
import tensorflow as tf
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics
def preprocess(x, y):
"""
x is a simple image, not a batch
"""
x = tf.cast(x, dtype=tf.float32) / 255.
x = tf.reshape(x, [28*28])
y = tf.cast(y, dtype=tf.int32)
y = tf.one_hot(y, depth=10)
return x,y
batchsz = 128
(x, y), (x_val, y_val) = datasets.mnist.load_data()
print('datasets:', x.shape, y.shape, x.min(), x.max())
db = tf.data.Dataset.from_tensor_slices((x,y))
db = db.map(preprocess).shuffle(60000).batch(batchsz)
ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val))
ds_val = ds_val.map(preprocess).batch(batchsz)
sample = next(iter(db))
print(sample[0].shape, sample[1].shape)
network = Sequential([layers.Dense(256, activation='relu'),
layers.Dense(128, activation='relu'),
layers.Dense(64, activation='relu'),
layers.Dense(32, activation='relu'),
layers.Dense(10)])
network.build(input_shape=(None, 28*28))
network.summary()
network.compile(optimizer=optimizers.Adam(lr=0.01),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy']
)
network.fit(db, epochs=3, validation_data=ds_val, validation_freq=2)
network.evaluate(ds_val)
network.save_weights('weights.ckpt')
print('saved weights.')
del network
network = Sequential([layers.Dense(256, activation='relu'),
layers.Dense(128, activation='relu'),
layers.Dense(64, activation='relu'),
layers.Dense(32, activation='relu'),
layers.Dense(10)])
network.compile(optimizer=optimizers.Adam(lr=0.01),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy']
)
network.load_weights('weights.ckpt')
print('loaded weights!')
network.evaluate(ds_val)
- 步骤大概就是先训练,然后保存参数,删除原来网络,然后创建一个和原来一样的网络,把参数重载,然后进行测试
网络的保存与加载
这个保存了网络的全部信息,不需要新建和原来一样的网络。
模型的部署
- 这里save的模型可以给别的语言使用