springcloud初级学习---8.Ribbon负载均衡服务调用

本文介绍Spring Cloud Ribbon,一种客户端负载均衡工具,支持多种负载均衡策略,如轮询、随机及响应时间加权等。文中详细解析了Ribbon的工作原理、核心组件IRule,并通过实例演示了如何自定义负载均衡规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.初识Ribbon

Ribbon 简介:

Spring Cloud Ribbon 是基于Netflix Ribbon 实现的一套客户端 负载均衡的工具。

Ribbon 是 Netflix 发布的开源项目,主要功能是提供客户端的软件负载均衡算法和服务调用。Ribbon 客户端组件提供一系列完善的配置项如连接超时,重试等。简单的说,就是在配置文件中列出 Load Balancer(简称LB)后面所有的机器,Ribbon 会自动的帮助你基于某种规则(如简单轮询、随机连接等)去连接这些机器。我们很容易使用Ribbon实现自定义的负载均衡算法。

官网资料:https://github.com/Netflix/ribbon/wiki/Getting-started

PS: Ribbon目前也进入维护模式,SpringCloud 想用Spring Cloud LoadBalancer 替代 Netflix 的Ribbon ,但现在 Ribbon 在生产环境中大规模部署,一时半会替不掉

作用: LB负载均衡(Load Balance)

简单的说就是将用户的请求平摊的分配到多个服务上,从而达到系统的HA(高可用)。常见的负载均衡有软件 Nginx,LVS,硬件F5 等。

  • 集中式B
    即在服务的消费方和提供方之间使用独立的LB设施(可以是硬件,如F5,也可以是软件,如nginx),由该设施负责把访问请求通过某种策略转发至服务的提供方
  • 进程内LB
    将 LB 逻辑集成到消费方,消费方从服务注册中心获知有哪些地址可用,然后自己再从这些地址中选择出一个合适的服务器。Ribbon就属于进程内 LB ,它只是一个类库,集成与消费方进程,消费方通过它来获取到服务提供方的地址。

Ribbon 本地负载均衡客户端 和 Nginx 服务端负载均衡 区别:

Nginx 是服务器负载均衡,客户端所有请求都会交给 nginx ,然后由 nginx 实现转发请求。即负载均衡是由服务端实现的。

Ribbon 本地负载均衡,在调用微服务接口时候,会在注册中心上获取注册信息服务列表之后缓存到JVM本地,从而在本地实现 RPC 远程服务调用技术。

总之一句话: Ribbon 就是 负载均衡 + RestTemplate调用,最终实现RPC的远程调用。

2.Ribbon 的负载均衡和 Rest 调用

Ribbon:
Ribbon 是一个软负载均衡的客户端组件,它可以和其他所需请求的客户端结合使用,和 eureka 结合只是其中的一个实例。

架构说明:
在这里插入图片描述

Ribbon 在工作时分成两步:

  • 第一步先选择 EurekaServer,它优先选择在同一个区域内负载较少的server
  • 第二步再根据用户指定的策略,在从server 取到的服务注册列表中选择一个地址
    其中Ribbon 提供了多种策略:比如轮询、随机和根据响应时间加权

新版eureka引入了ribbon,所以不用自己引入也可以使用负载均衡
在这里插入图片描述

RestTemplate使用:

官网:https://docs.spring.io/spring-framework/docs/5.2.2.RELEASE/javadoc-api/org/springframework/web/client/RestTemplate.html

getForObject 方法 / getForEntity方法

在这里插入图片描述

postForObject 方法 / postForEntity 方法

3.Ribbon核心组件IRule

IRule: 根据特定算法从服务列表中选取一个要访问的服务

实现类:
在这里插入图片描述

  • com.netflix.loadbalancer.RoundRobinRule 轮询
  • com.netflix.loadbalancer.RandomRule 随机
  • com.netflix.loadbalancer.RetryRule 先按照RoundRobinRule的策略获取服务,如果获取服务失败则在指定时间内会进行重试,获取可用的服务
  • WeightedResponseTimeRule 对RoundRobinRule的扩展,响应速度越快的实例选择权重越大,越容易被选择
  • BestAvailableRule 会先过滤掉由于多次访问故障而处于断路器跳闸状态的服务,然后选择一个并发量最小的服务
  • AvailabilityFilteringRule 先过滤掉故障实例,再选择并发较小的实例
  • ZoneAvoidanceRule 默认规则,复合判断server所在区域的性能和server的可用性选择服务器

4.Ribbon 负载规则替换

添加规则类:

注意: 官方文档明确给出了警告:
在这里插入图片描述

这个自定义配置类不能放在 @ComponentScan 所扫描的当前包下以及子包下,否则自定义的配置类就会被所有的 Ribbon 客户端所共享,达不到特殊化定制的目的了。
在这里插入图片描述

package com.atguigu.myrule;
import com.netflix.loadbalancer.IRule;
import com.netflix.loadbalancer.RandomRule;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

/**
 * 自定义负载均衡规则类
 */
@Configuration
public class MySelfRule {
    @Bean
    public IRule myRule(){
        return new RandomRule();
    }
}

主启动类添加 @RibbonClient

在启动该微服务的时候就能去加载我们的自定义 Ribbon 配置类,从而使配置生效

package com.atguigu.springcloud;
import com.atguigu.myrule.MySelfRule;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.netflix.ribbon.RibbonClient;

@SpringBootApplication
@EnableEurekaClient
@RibbonClient(name = "CLOUD-PROVIDER-SERVICE",configuration = MySelfRule.class)
public class OrderMain80 {
    public static void main(String[] args) {
        SpringApplication.run(OrderMain80.class,args);
    }
}

测试

在这里插入图片描述

多次刷新,是随机出现 serverPort ,负载规则就更改为随机了。

5.Ribbon 默认负载均衡算法 原理 + 手写

负载均衡算法: 轮询

rest 接口第几次请求数 % 服务器集群总数量 = 实际调用服务器位置下标
每次服务器重启后rest接口数从1开始

List<ServiceInstance> instances = discoveryClient.getInstances("CLOUD-PROVIDER-SERVICE")

如:

List[0] instances = 127.0.0.1:8002
List[1] instances = 127.0.0.1:8001

8001 + 8002 组合成为集群,它们共计2台机器,集群总数为2,按照轮询算法原理:
在这里插入图片描述

源码:

//IRule接口
public interface IRule{
    /*
     * choose one alive server from lb.allServers or
     * lb.upServers according to key
     * 
     * @return choosen Server object. NULL is returned if none
     *  server is available 
     */
	//选择哪个服务实例
    public Server choose(Object key);
    
    public void setLoadBalancer(ILoadBalancer lb);
    
    public ILoadBalancer getLoadBalancer();    
}
public class RoundRobinRule extends AbstractLoadBalancerRule {

    private AtomicInteger nextServerCyclicCounter;
    private static final boolean AVAILABLE_ONLY_SERVERS = true;
    private static final boolean ALL_SERVERS = false;

    private static Logger log = LoggerFactory.getLogger(RoundRobinRule.class);

    public RoundRobinRule() {
        nextServerCyclicCounter = new AtomicInteger(0);
    }

    public RoundRobinRule(ILoadBalancer lb) {
        this();
        setLoadBalancer(lb);
    }

    public Server choose(ILoadBalancer lb, Object key) {
        if (lb == null) {
            log.warn("no load balancer");
            return null;
        }

        Server server = null;
        int count = 0;
        while (server == null && count++ < 10) {
            List<Server> reachableServers = lb.getReachableServers();
            List<Server> allServers = lb.getAllServers();
            int upCount = reachableServers.size();
            int serverCount = allServers.size();

            if ((upCount == 0) || (serverCount == 0)) {
                log.warn("No up servers available from load balancer: " + lb);
                return null;
            }

            int nextServerIndex = incrementAndGetModulo(serverCount);
            server = allServers.get(nextServerIndex);

            if (server == null) {
                /* Transient. */
                Thread.yield();
                continue;
            }

            if (server.isAlive() && (server.isReadyToServe())) {
                return (server);
            }

            // Next.
            server = null;
        }

        if (count >= 10) {
            log.warn("No available alive servers after 10 tries from load balancer: "
                    + lb);
        }
        return server;
    }

    /**
     * Inspired by the implementation of {@link AtomicInteger#incrementAndGet()}.
     *
     * @param modulo The modulo to bound the value of the counter.
     * @return The next value.
     */
    private int incrementAndGetModulo(int modulo) {
        for (;;) {
            int current = nextServerCyclicCounter.get();
            int next = (current + 1) % modulo;
            if (nextServerCyclicCounter.compareAndSet(current, next))
                return next;
        }
    }

    @Override
    public Server choose(Object key) {
        return choose(getLoadBalancer(), key);
    }

    @Override
    public void initWithNiwsConfig(IClientConfig clientConfig) {
    }
}

手写轮询算法:

  • 7001/7002集群启动
  • 8001/8002微服务改造
    在这里插入图片描述

在这里插入图片描述

  • 80订单微服务改造
  1. 不使用ribbon自带的负载均衡,ApplicationContextConfig 去掉注解@LoadBalanced
    在这里插入图片描述

  2. LoadBalancer 接口

package com.atguigu.springcloud.lb;
import org.springframework.cloud.client.ServiceInstance;
import java.util.List;

/**
 * 模拟 ILoadBalancer 的接口,选择哪一个负载算法和机器
 * @author wsk
 * @date 2020/3/13 17:11
 */
public interface LoadBalancer {
    //获取eureka上的活着的机器总数
    ServiceInstance instances(List<ServiceInstance> serviceInstanceList);

}
  1. MyLB
package com.atguigu.springcloud.lb;
import org.springframework.cloud.client.ServiceInstance;
import org.springframework.stereotype.Component;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
/**
 * Ribbon 手写轮询算法
 * @author wsk
 * @date 2020/3/13 17:16
 */
@Component
public class MyLB implements LoadBalancer {
    //原子类
    private AtomicInteger atomicInteger = new AtomicInteger(0);

    public final int getAndIncrement(){
        int current;
        int next;
        do{
            current = this.atomicInteger.get();
            //超过最大值,为0,重新计数 2147483647 Integer.MAX_VALUE
            next = current >= 2147483647 ? 0 : current + 1;
            //自旋锁
        }while (!this.atomicInteger.compareAndSet(current,next));
        System.out.println("*****第几次访问,次数next:"+next);
        return next;
    }

    @Override
    public ServiceInstance instances(List<ServiceInstance> serviceInstance) {
        int index = getAndIncrement() % serviceInstance.size();
        return serviceInstance.get(index);
    }
}
  1. OrderController
package com.atguigu.springcloud.controller;
import com.atguigu.springcloud.entities.CommonResult;
import com.atguigu.springcloud.entities.Payment;
import com.atguigu.springcloud.lb.LoadBalancer;
import lombok.extern.slf4j.Slf4j;
import org.springframework.cloud.client.ServiceInstance;
import org.springframework.cloud.client.discovery.DiscoveryClient;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.client.RestTemplate;
import javax.annotation.Resource;
import java.net.URI;
import java.util.List;

@RestController
@Slf4j
public class OrderController {
    //private static final String PAYMENT_URL="http://localhost:8001";
    //通过在eureka上注册过的微服务名称调用
    private static final String PAYMENT_URL = "http://CLOUD-PROVIDER-SERVICE";

    @Resource
    private RestTemplate restTemplate;
    /**
     * 自定义负载均衡规则
     */
    @Resource
    private LoadBalancer loadBalancer;
    @Resource
    private DiscoveryClient discoveryClient;

    @GetMapping("/consumer/payment/create")
    public CommonResult<Payment> create(Payment payment){
        return restTemplate.postForObject(PAYMENT_URL+"/payment/create",payment,CommonResult.class);
    }

    @GetMapping("/consumer/payment/get/{id}")
    public CommonResult<Payment> getPayment(@PathVariable("id") Long id){
        return restTemplate.getForObject(PAYMENT_URL+"/payment/get/"+id,CommonResult.class);
    }

    @GetMapping("/consumer/payment/getForEntity/{id}")
    public CommonResult<Payment> getPayment2(@PathVariable("id") Long id){
        ResponseEntity<CommonResult> entity = restTemplate.getForEntity(PAYMENT_URL+"/payment/get/"+id,CommonResult.class);

        if(entity.getStatusCode().is2xxSuccessful()){
            return entity.getBody();
        }else{
            return new CommonResult(444,"操作失败");
        }
    }
	/**
     * 路由规则:轮询
     * @param 
     * @return 
     */
    @GetMapping(value = "/consumer/payment/lb")
    public String getPaymentLB(){
        List<ServiceInstance> instances = discoveryClient.getInstances("CLOUD-PROVIDER-SERVICE");
        if(instances == null || instances.size() <= 0){
            return null;
        }
        ServiceInstance serviceInstance = loadBalancer.instances(instances);
        URI uri = serviceInstance.getUri();
        return restTemplate.getForObject(uri+"/payment/lb",String.class);
    }
}
  1. 启动80 测试
    在这里插入图片描述

多次刷新,会发现8001、8002依次出现,控制台也打印消息
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值