C语言实现动态规划求解最小硬币问题

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:最小硬币问题是一个运用动态规划算法的典型问题,主要目的是通过使用最少数量的硬币组成一个给定的目标金额。本文通过C语言展示了如何利用动态规划解决该问题,并提供了一个具体的代码示例。该示例首先定义了一个硬币面值数组,然后通过动态规划的方式计算出达到每个目标金额所需的最小硬币数量。代码中使用了嵌套循环来遍历所有可能的目标金额和硬币面值组合,最终通过 main 函数输出最少硬币数来组成指定金额的结果。这个动态规划的实现方法在提高效率的同时,避免了重复计算,对理解算法设计和提升编程技巧具有重要意义。
最小硬币问题的c语言代码

1. 最小硬币问题描述

在日常生活中,我们经常会遇到需要使用零钱的场景。假设我们有一组硬币的面值,我们希望找出能够组成给定目标金额的最小硬币组合数量。这个问题在计算机科学中被称为“最小硬币问题”。为了解决这个问题,我们会引入动态规划的方法,这是一种广泛应用于解决复杂问题的算法策略。在接下来的章节中,我们将逐步分解并深入探讨如何使用动态规划解决这一问题,从基础概念到实际编码实现。让我们开始探索最小硬币问题的奥秘。

2. 动态规划概念介绍

2.1 动态规划的理论基础

动态规划是解决多阶段决策过程优化问题的一种数学方法。它将复杂问题分解为相互关联的简单子问题,通过解决子问题,合并子问题的解来构造整个问题的最优解。

2.1.1 动态规划的定义与特性

动态规划通常具有以下特性:

  • 最优子结构 :问题的最优解包含其子问题的最优解。
  • 重叠子问题 :在递归过程中,相同的子问题会被多次计算。
  • 无后效性 :子问题的解不依赖于任何非它自身的结果。

这种特性使得动态规划非常适合使用缓存(通常称为记忆化)或自底向上的表格填充法来避免重复计算,提高效率。

2.1.2 动态规划与分治策略的关系

分治策略将问题分解为不相关的子问题,通常用递归实现。而动态规划同样使用分治思想,但它处理的是重叠子问题,并利用之前计算的结果来避免重复计算。因此,动态规划可以视为分治策略的特化,特别适用于有重叠子问题的情况。

2.2 动态规划的典型问题分析

2.2.1 背包问题

背包问题是一种组合优化的问题。在动态规划中,有一个重要的特例——0/1背包问题。问题描述为:给定一组物品,每种物品都有自己的重量和价值,在限定的总重量内,怎样选择装入背包的物品,使得背包中的总价值最大。

解决策略

  1. 定义一个二维数组 dp[i][w] ,表示前 i 个物品在限制重量为 w 的情况下能达到的最大价值。
  2. 遍历所有物品,对于每个物品,有两种选择:装入背包或不装入背包。
  3. 对每个物品,更新 dp 数组。

2.2.2 最长公共子序列

最长公共子序列问题(LCS)寻找两个序列的最长子序列,这个子序列不一定是连续的。

解决策略

  1. 定义一个二维数组 dp[i][j] ,表示序列 X[1..i] 与序列 Y[1..j] 的最长公共子序列的长度。
  2. 如果 X[i] == Y[j] dp[i][j] = dp[i-1][j-1] + 1
  3. 否则, dp[i][j] = max(dp[i-1][j], dp[i][j-1])
  4. 最终 dp[X.length][Y.length] 就是所求最长公共子序列的长度。

2.2.3 最短路径问题

在带权图中,寻找从起点到终点的最短路径是动态规划的一个经典应用。

解决策略

  1. 假设图的节点为 1 n ,定义 dp[i] 为从起点到节点 i 的最短路径长度。
  2. 对每个节点,遍历其所有前驱节点,更新 dp[i]
  3. 最终 dp[n] 即为起点到终点的最短路径长度。

通过这些典型的动态规划问题,我们可以看到其解决模式和逻辑结构。虽然每种问题的具体细节和状态转移方程不尽相同,但核心思想是一致的:将复杂问题分解为简单子问题,并利用子问题的解来构建整个问题的最优解。

3. C语言实现动态规划

3.1 C语言概述

3.1.1 C语言的基本语法

C语言是一种广泛使用的编程语言,它以其效率高和功能强大而闻名。一个C语言程序可以分为以下几个基本部分:

  • 预处理指令 :以 # 开头的命令,如 #include 用于包含其他文件。
  • 函数 :程序的基本构建块,用于执行特定任务。
  • 变量 :用于存储数据值。
  • 语句和表达式 :用于执行操作和计算。
  • 注释 :用于解释代码,不会被执行。

为了实现动态规划算法,我们需要熟悉C语言的数组、循环、条件判断和函数等基本语法。下面是一个简单的C语言程序示例,它声明了一个函数来计算两个整数的和:

#include <stdio.h>

// 函数声明,用于计算两个整数的和
int add(int num1, int num2);

int main() {
    int a = 5, b = 10, sum;
    sum = add(a, b);
    printf("Sum is %d\n", sum);
    return 0;
}

// 函数定义,实现加法运算
int add(int num1, int num2) {
    return num1 + num2;
}

3.1.2 C语言的数据结构

C语言提供了基本的数据结构,如数组、结构体和指针。动态规划算法经常涉及到数组的使用,尤其是多维数组来存储中间状态。

  • 数组 :用于存储相同类型的数据项的集合。
  • 结构体 :用于创建包含不同类型数据项的新类型。
  • 指针 :存储变量地址,用于动态内存分配和高效的算法实现。

例如,我们定义一个整型数组来存储动态规划中每一状态的最小硬币数量:

#define MAX_COINS 5 // 假设最大硬币数为5
#define MAX_AMOUNT 10 // 目标金额上限为10

int dp[MAX_AMOUNT + 1]; // dp数组,存储从0到目标金额所需最小硬币数

3.2 C语言实现动态规划的准备工作

3.2.1 开发环境配置

在编写C语言程序之前,需要配置开发环境。一般而言,一个C语言编译器(如GCC)和一个文本编辑器(如Visual Studio Code或Emacs)就足够了。此外,一个集成开发环境(IDE)如Code::Blocks或Eclipse可以进一步简化开发流程。

3.2.2 算法逻辑构思

实现动态规划算法之前,需要理解问题并构思算法逻辑。对于最小硬币问题,算法需要找到组成目标金额所需的最小硬币数。基本步骤包括:

  1. 初始化 dp 数组。
  2. 遍历所有可能的金额,从1到目标金额。
  3. 对于每个金额,检查所有面值的硬币,找到能够组成该金额的最小硬币数。
  4. 返回目标金额对应的最小硬币数。

下面的示例代码展示了这一逻辑的实现:

#include <stdio.h>
#include <limits.h>

// 动态规划求解最小硬币问题
int minCoins(int coins[], int n, int amount) {
    int dp[amount + 1];
    dp[0] = 0;

    for (int i = 1; i <= amount; i++) {
        dp[i] = INT_MAX;
        for (int j = 0; j < n; j++) {
            if (coins[j] <= i && dp[i - coins[j]] != INT_MAX) {
                dp[i] = (dp[i] > dp[i - coins[j]] + 1) ? dp[i - coins[j]] + 1 : dp[i];
            }
        }
    }
    return (dp[amount] == INT_MAX) ? -1 : dp[amount];
}

int main() {
    int coins[] = {25, 10, 5, 1}; // 美国货币硬币面值
    int n = sizeof(coins) / sizeof(coins[0]);
    int amount = 63; // 目标金额
    printf("Minimum coins required is %d\n", minCoins(coins, n, amount));
    return 0;
}

以上代码段演示了如何使用动态规划来解决硬币找零问题。 minCoins 函数初始化了一个 dp 数组,然后通过双层循环计算出组成每一金额的最小硬币数。最后在 main 函数中调用该函数并打印结果。

4. 硬币面值数组定义

4.1 硬币面值问题的变量定义

4.1.1 面值数组的创建与初始化

在解决最小硬币问题时,硬币面值数组的定义至关重要。这个数组将存储所有可用硬币的面值,为算法后续的计算提供基础数据。以下是C语言中如何创建并初始化硬币面值数组的示例:

#include <stdio.h>

int main() {
    int denominations[] = {1, 5, 10, 25}; // 常见的硬币面值
    int n = sizeof(denominations) / sizeof(denominations[0]); // 计算面值数量
    return 0;
}

在这段代码中,我们定义了一个名为 denominations 的数组,它包含了4种常见的硬币面值:1分、5分、10分和25分。 n 变量用于存储硬币面值的数量,它通过计算数组 denominations 的长度获得。

4.1.2 面值数组的作用与重要性

硬币面值数组是动态规划算法中存储状态转移信息的关键数据结构。它不仅决定了硬币的种类,还会影响最终计算出的最小硬币组合数量。每个硬币面值都可能成为达到目标金额的一步,因此,硬币面值数组的选择直接影响了算法的解空间大小和效率。

在动态规划中,面值数组的数据通常需要满足以下条件:
- 面值数组必须非递减排序,这样可以保证每一步的决策都是在当前选择下的最优解。
- 面值数组中的每个元素都必须是正整数,因为硬币的面值不可能是0或负数。

4.2 面值数组的扩展与应用

4.2.1 多种面值组合的场景模拟

在真实世界的应用中,硬币面值的组合可能会更加复杂。比如,某些国家的硬币面值包含1分、2分、5分、10分、20分、50分、100分等等。为了适应这些场景,我们需要扩展面值数组以包含所有可能的面值。

int denominations[] = {1, 2, 5, 10, 20, 50, 100};

在扩展数组后,我们需要重新评估算法的效率和复杂度,以确保算法在处理大量数据时仍然高效。通常情况下,随着面值种类的增加,算法的时间复杂度也会相应增加。

4.2.2 面值数组与动态规划算法的结合

将面值数组与动态规划算法结合的关键在于构建状态转移方程。在硬币问题中,状态转移方程可以表述为:为了达到目标金额 i ,所需的最小硬币数量等于 min(1 + dp[i-denominations[j]]) ,其中 j 是遍历面值数组时的索引。

int minCoins(int coins[], int m, int V) {
    int dp[V+1];
    dp[0] = 0; // 目标金额为0时不需要任何硬币

    // 初始化数组,其余金额的最小硬币数设为一个大值
    for (int i = 1; i <= V; i++)
        dp[i] = INT_MAX;

    // 动态规划算法的核心:构建最小硬币数数组
    for (int i = 1; i <= V; i++) {
        for (int j = 0; j < m; j++) {
            if (coins[j] <= i) {
                int sub_res = dp[i - coins[j]];
                if (sub_res != INT_MAX && sub_res + 1 < dp[i])
                    dp[i] = sub_res + 1;
            }
        }
    }

    return dp[V];
}

在这段代码中, coins 数组对应于面值数组 denominations m 是面值种类的数量, V 是目标金额。 dp 数组用于存储达到每个金额所需的最小硬币数。通过这个状态转移方程,我们可以递推地计算出达到目标金额所需的最小硬币数量。

请注意,上述示例代码仅用于说明硬币面值数组与动态规划算法结合的逻辑,并非完整解决方案。实际应用中可能需要根据具体情况进行调整优化。

5. 动态规划数组 dp 定义

在理解和定义了硬币面值数组之后,我们转向构建核心的动态规划数组 dp 。这个数组将用于存储从0到目标金额所有可能的硬币组合数,其中每一个元素 dp[i] 表示组成金额 i 所需的最少硬币数量。本章内容将详细解释 dp 数组的构建过程、初始化步骤以及边界条件的处理,确保我们能够有效地利用动态规划解决最小硬币问题。

5.1 dp 数组的构建与意义

5.1.1 dp 数组的定义

动态规划数组 dp ,顾名思义,是解决动态规划问题的核心组件之一。在最小硬币问题中, dp 数组的每一个位置 dp[i] 代表着达到金额 i 所需的最小硬币数量。这个数组将按照金额从0到目标金额进行填充,最终 dp[amount] 的值即为我们要找的答案。

由于每一种金额都是基于比它小的金额得来的, dp 数组的构建依赖于较小金额的解。因此, dp[0] 的值将是0,因为金额为0时不需要任何硬币。而 dp[1] dp[amount] 的值需要通过计算得出。

5.1.2 dp 数组在算法中的作用

dp 数组在算法中的作用是记录达到每个金额所需的最小硬币数。这种记录方式使得算法能够利用已知的较小问题的解来构建更大问题的解。它反映了动态规划的自底向上方法,也即问题分解为子问题,子问题又进一步分解为更小的子问题,直到可以直接求解的最基本问题。

在此基础上,动态规划数组 dp 在算法中起到了缓存中间结果的作用,避免了重复计算,从而提高了整体算法的效率。对于最小硬币问题, dp 数组记录了从0到目标金额 amount 的所有组合中硬币数量的最小值。

5.2 dp 数组的初始化与边界处理

5.2.1 初始化策略与选择

对于 dp 数组的初始化,我们从最低金额开始,即 dp[0] 。由于金额为0不需要任何硬币,故 dp[0] = 0 。对于 dp[1] dp[amount] ,在没有计算之前,我们无法确定具体的最小硬币数量,因此这些值可以初始化为一个非常大的数,通常使用 INT_MAX (在C语言中表示为整型的最大值),或者简单地初始化为 amount + 1 ,因为它至少需要 amount 个硬币(如果恰好可以用 amount 个硬币组成 amount 金额的话)。

初始化策略的正确选择对于确保算法能正确运行至关重要。如果初始化值设置过小,可能会影响到后续状态转移方程的判断;设置过大,则可能会导致计算过程中产生溢出。

5.2.2 边界条件的分析与处理

在动态规划算法中,边界条件的分析与处理是确保算法准确性的重要步骤。在本问题中,我们需要特别关注两个边界条件: dp[0] dp[amount]

对于 dp[0] ,由于金额为0,因此不需要任何硬币,其值被初始化为0。这个值将作为其他所有金额计算的基础,表示达到金额0的最小硬币数。

对于 dp[amount] ,其值即为问题的最终解。在算法开始时,我们无法直接得到 dp[amount] 的准确值,需要通过后续的双层循环遍历计算得到。因此,初始时我们可以将 dp[amount] 设置为一个足够大的数,通常在求解过程中,当找到比当前 dp[amount] 更小的硬币组合时,我们就更新它的值。

在边界条件处理上,我们还需注意目标金额 amount 大于硬币面值总和时的情况。此时,无论如何组合硬币,都无法达到目标金额,因此 dp[amount] 应保持为初始值 amount + 1 或者 INT_MAX ,表示无法达成目标。

在实际编程实践中,处理边界条件时需要特别小心,确保所有的边界情况都被正确处理,以免造成程序的错误或逻辑混乱。

int *dp = (int *)malloc((amount + 1) * sizeof(int)); // 分配dp数组空间
if (dp == NULL) {
    // 处理内存分配失败的情况
}

// 初始化dp数组
dp[0] = 0; // 金额为0时不需要硬币
for (int i = 1; i <= amount; i++) {
    dp[i] = amount + 1; // 初始化为一个大数,表示无法达成目标
}

// 此处省略了初始化后的动态规划计算过程
// ...

在上述代码中,我们首先分配了动态规划数组 dp ,并对其进行了初始化。通过简单的循环,我们为 dp 数组的每个元素赋予了初始值。这样,后续在进行动态规划计算时,就可以基于这些初始化的值来构建最终的解。

本章节的内容介绍了动态规划数组 dp 的构建过程及其在最小硬币问题中的意义,并详细解析了初始化策略与边界条件的处理。理解这些概念和步骤对于实现一个正确的动态规划算法至关重要,为下一章节的双层循环遍历计算奠定了基础。

6. 目标金额初始化处理

6.1 目标金额的逻辑理解与设定

6.1.1 目标金额的定义

在最小硬币问题中,目标金额是问题的关键参数,它代表了我们需要用硬币凑齐的具体数值。在动态规划算法中,目标金额通常被用作状态转移方程中的一个重要的参考值。为了实现问题的求解,需要在程序初始化阶段对目标金额进行定义和处理。

6.1.2 目标金额对算法的影响

目标金额直接影响算法的设计和状态转移方程的构建。例如,如果目标金额是0,那么意味着不需要任何硬币来凑齐;如果目标金额很大,则可能需要考虑更复杂的硬币组合和更高效的算法优化策略。因此,正确地理解和处理目标金额是求解问题的关键。

6.2 目标金额的特殊情况分析

6.2.1 目标金额为0的情况

当目标金额为0时,我们可以认为不需要使用任何硬币来凑齐,因此问题的解为0。在编程实现时,应当检查目标金额是否为0,并在条件满足的情况下直接返回结果。

if (target == 0) {
    // 目标金额为0,不需要任何硬币,直接返回0
    return 0;
}

以上代码段表示,在目标金额为0的情况下,算法直接返回0作为结果。这是因为任何硬币组合都不可能比“无硬币组合”更少硬币数量。

6.2.2 目标金额超过硬币面值总和的情况

另一个特殊情况是目标金额大于所有硬币面值的总和。在这种情况下,算法需要找到一种方法来处理,因为按照常规的动态规划方法,结果会是凑不齐目标金额。

处理这种情况的一种方法是通过引入一个特殊硬币值,例如一个面值非常大的硬币,这个硬币的值大于目标金额。这将确保我们可以凑齐任何大于或等于这个特殊硬币值的目标金额,但这样的解决方案不是最优的。在实际的编程实现中,应该检查目标金额是否超过了硬币面值的总和,并据此调整算法逻辑。

if (target > sum_of_coin_values) {
    // 目标金额超过所有硬币面值的总和,无法凑齐,返回-1或其他错误标志
    return -1;
}

以上代码段表示,在目标金额超过硬币面值总和的情况下,算法返回-1或其他错误标志,表示无法凑齐目标金额。

在处理了这些特殊情况后,算法就可以针对一般情况进行处理了,即在目标金额是一个正整数且不超过硬币面值总和的情况下,使用动态规划求解最小硬币问题。下一章将详细介绍双层循环遍历计算的具体实现方法。

7. 双层循环遍历计算

7.1 双层循环算法逻辑实现

双层循环是动态规划中最常见的实现方式之一,它能帮助我们遍历所有可能的子问题,并找出最优解。

7.1.1 外层循环的控制变量与意义

在本问题中,外层循环控制的是当前的目标金额,而内层循环则尝试对目标金额进行各种可能的硬币组合以找到最小硬币数。外层循环的控制变量通常是从1到目标金额 amount ,这里 amount 是我们希望支付的总金额。

for (int i = 1; i <= amount; i++) {
    // 内层循环逻辑
}

7.1.2 内层循环的逻辑实现与优化

内层循环需要遍历所有硬币的面值,尝试用更少的硬币组成当前的目标金额。这种遍历方式需要仔细设计,以避免重复计算。

for (int j = 0; j < n; j++) {
    if (i >= coins[j]) {
        dp[i] = fmin(dp[i], dp[i - coins[j]] + 1);
    }
}

7.2 遍历过程中的问题分析与解决

7.2.1 状态转移方程的构建

在动态规划中,状态转移方程是关键。它描述了如何从前一个或多个状态到达当前状态。对于最小硬币问题,状态转移方程可以表达为:

dp[i] = min(dp[i], dp[i - coins[j]] + 1) for all j such that coins[j] <= i

这个方程表示对于当前的目标金额 i ,我们可以尝试将每一种面值的硬币减去,然后查看剩余金额的最小硬币数,并加上一个当前面值的硬币,取这些可能中的最小值。

7.2.2 时间复杂度的分析与优化

在最初的双层循环中,时间复杂度是 O(amount * n) ,其中 n 是硬币种类的数目。为了优化这个算法,我们可以采用一些策略来减少不必要的计算。

一种策略是减少内层循环的次数。例如,我们不需要考虑那些大于当前目标金额 i 的硬币面值,因为它们不可能是最优解的一部分。此外,我们还可以使用一个更复杂的排序和查找技术,来在更小的集合上进行操作。

通过这些优化,我们可以显著提高算法的效率,尤其是在处理大量的硬币面值和较大的目标金额时。

graph TD
    A[开始遍历] --> B[外层循环设置目标金额]
    B --> C[内层循环遍历硬币面值]
    C -->|是否小于等于当前金额i| D[计算状态转移]
    C -->|硬币面值大于i| E[跳过该面值]
    D --> F[更新dp数组]
    E --> G[继续下一个面值]
    F --> G
    G --> H{内层循环结束}
    H -->|否| C
    H -->|是| I{外层循环结束}
    I -->|否| B
    I -->|是| J[返回最终结果]

在上述流程图中,我们可以看到优化后的算法流程,确保每一步都是必要且高效的。通过这种结构化和细致的遍历过程,我们可以确保在计算最少硬币数量时,算法既准确又高效。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:最小硬币问题是一个运用动态规划算法的典型问题,主要目的是通过使用最少数量的硬币组成一个给定的目标金额。本文通过C语言展示了如何利用动态规划解决该问题,并提供了一个具体的代码示例。该示例首先定义了一个硬币面值数组,然后通过动态规划的方式计算出达到每个目标金额所需的最小硬币数量。代码中使用了嵌套循环来遍历所有可能的目标金额和硬币面值组合,最终通过 main 函数输出最少硬币数来组成指定金额的结果。这个动态规划的实现方法在提高效率的同时,避免了重复计算,对理解算法设计和提升编程技巧具有重要意义。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值