1、分类问题
分类平面 :指的是分类器的决策边界,能够将不同类别的数据点分开。
函数距离 :函数距离的正负可以表示分类的正确性和信心。
几何距离 : 几何距离可以表示样本点到分类平面的距离。
支持向量和支持平面 : 最靠近分类平面的点是支持向量,支持向量构成支持平面。
分类器的分类间距 :指的就是支持平面之间的距离。
2、支持向量机
2.1 核心思想
最大化分类间距
2.2 相关算法
拉格朗日乘子法
梯度下降算法
拉格朗日函数的min-max等价转换
对偶问题的转化
2.3 结论
支持向量机的预测只与支持向量有关,非支持向量的样本点不起作用。
3、松弛变量
在进行最大化分类间距的时候,样本点并不总是线性可分的,在下图中,右上方的红色样本点背离了下方的红色群体,同时左下方的样本点背离了上方的蓝色群体,这种点我们称之为离群点。这时候可以引入松弛变量,容忍这些不可分数据,新的优化目标是最大化分类间隔,最小化离群距离。这种情况下可以对拉格朗日问题的对偶问题进行求解。
4、核函数
松弛变量只适用于离群点较少的情况,也就是线性不可分的情况不太严重时适用,如果线性不可分情况非常严重,需要进一步进行空间映射 ,将低维的线性不可分问题转化为高维的线性可分问题。
这个时候需要引入核函数,完成低维到高维空间的映射。