自然语言处理-3-支持向量机

本文介绍了支持向量机(SVM)的基本概念与原理,包括分类平面、函数距离、几何距离等,并探讨了如何通过最大化分类间距来提升分类效果。此外还讨论了松弛变量在处理线性不可分数据中的应用及核函数实现从低维空间到高维空间的映射。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、分类问题

分类平面 :指的是分类器的决策边界,能够将不同类别的数据点分开。
函数距离 :函数距离的正负可以表示分类的正确性和信心。
几何距离 : 几何距离可以表示样本点到分类平面的距离。
支持向量和支持平面 : 最靠近分类平面的点是支持向量,支持向量构成支持平面。
分类器的分类间距 :指的就是支持平面之间的距离。
在这里插入图片描述

2、支持向量机

2.1 核心思想

最大化分类间距

2.2 相关算法

拉格朗日乘子法
梯度下降算法
拉格朗日函数的min-max等价转换
对偶问题的转化

2.3 结论

支持向量机的预测只与支持向量有关,非支持向量的样本点不起作用。

3、松弛变量

在进行最大化分类间距的时候,样本点并不总是线性可分的,在下图中,右上方的红色样本点背离了下方的红色群体,同时左下方的样本点背离了上方的蓝色群体,这种点我们称之为离群点。这时候可以引入松弛变量,容忍这些不可分数据,新的优化目标是最大化分类间隔,最小化离群距离。这种情况下可以对拉格朗日问题的对偶问题进行求解。
在这里插入图片描述

4、核函数

松弛变量只适用于离群点较少的情况,也就是线性不可分的情况不太严重时适用,如果线性不可分情况非常严重,需要进一步进行空间映射 ,将低维的线性不可分问题转化为高维的线性可分问题。
在这里插入图片描述
这个时候需要引入核函数,完成低维到高维空间的映射。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值