
机器学习
文章平均质量分 79
weixin_42515907
此人不懒
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
NLP-神经网络
前向神经网络 FNN 参数多、固定输入(受限性高、输入维度固定),其本质是多元复合函数。 前向传播输入信号产生误差,反向传播计算误差信息更新参数权重矩阵。 网络结构 前向传播 反向传播 计算推导过程 递归神经网络RNN 卷积神经网络CNN 注意力神经网络ANN ...原创 2020-10-29 14:14:26 · 229 阅读 · 0 评论 -
NLP之三特征提取
1、基本文本处理技能 (1)、分词的概念 分词的正向最大 分词的逆向最大 分词的双向最大匹配法 (2)、词、字符频率统计 可使用python的collections.Counter模块,也可以用自己找到的其他更好用的库 2、语言模型 (1)、unigram、bigram、trigram概念 (2)、unigram、bigram频率统计 3、文本矩阵化 要求采用词袋模型且是词级别的矩阵化 分词(...原创 2019-03-03 23:09:10 · 696 阅读 · 0 评论 -
自然语言处理之二NLP之数据集探索
NLP之数据集探索 1、IMDB数据集下载和探索 2、THUCNews数据集下载和探索 数据集链接: https://pan.baidu.com/s/15p_W4EPXEVSZ7GxQ_lkISg 提取码:0mmy 参考链接: 1、CNN字符级中文文本分类-基于TensorFlow实现 2、text-classification-cnn-rnn (1)、数据集介绍 数据集的详细介绍参见这篇说明:h...原创 2019-03-03 18:06:49 · 516 阅读 · 0 评论 -
自然语言处理之一NLP基础
自然语言处理基础 1、学习说明 学习自然语言处理理论,并且通过对某些数据集的文本分类任务不断优化来进行实践。 任务路线: 特征提取——>特征选择——>文本表示——>传统机器学习算法跑模型——>LDA生成新特征——>深度学习算法跑模型 2、tensorflow的安装和基础 图(graphs)、会话(session)、tensor、变量、feed、f原创 2019-03-03 14:42:53 · 223 阅读 · 0 评论 -
tf.placeholder() is not compatible with eager execution.解决方法
我用的是tf 2版本,出现这个错误的原因分析如下: 在tf 1 版本中,placeholder可以这么用,placeholder相当于一个占位符 with是开启这个会话,等到有feed_dict喂入时,placeholder代表的参数才会真正地进入会话之中,运算开始进行。 tf.placeholder() is meant to be fed to the session that when ru...原创 2020-04-01 23:23:32 · 5642 阅读 · 0 评论 -
机器学习实战——使用k邻近算法改进约会网站配对效果
一、资源准备 1、datingTestSet.txt 链接: https://pan.baidu.com/s/1mJ-9P_54PaP4hmiwBHMduw 提取码: wrua 二、实验环境 Anaconda numpy & matplotlib 包的安装 IDE:pycharm 三、实现过程 1、目的:datingTestSet.txt文件内的数据总共四列,前三列分别表示...原创 2018-10-15 15:13:22 · 408 阅读 · 0 评论 -
机器学习之一线性回归算法
文章目录1、机器学习相关概念2、线性回归的原理3、线性回归损失函数、代价函数、目标函数的概念4、一元线性回归的参数求解公式推导5、多元线性回归的参数求解公式推导6、线性回归的评估指标有哪些?原理是什么?7、sklearn参数详解(sklearn包里面线性回归的每个参数的作用) 1、机器学习相关概念 2、线性回归的原理 3、线性回归损失函数、代价函数、目标函数的概念 4、一元线性回归的参数求解公式推...原创 2019-02-28 18:09:36 · 674 阅读 · 0 评论 -
机器学习之二用sk-learn实现波士顿房价预测(单变量)
1、使用sk-learn进行波士顿房价预测的过程 (1)、波士顿地区房价数据获取,数据来自于sklearn自带数据集; (2)、波士顿地区房价数据分割; (3)、训练与测试数据标准化处理; (4)、使用最简单的线性回归模型LinearRegression对房价进行预测。 2、回归性能评价 MSE(Mean Squared Error):均方误差。 是真实值与预测值的差值的平方然后求和平均。常被用作...原创 2019-03-03 13:39:35 · 5278 阅读 · 0 评论