论文阅读 Safe Local Exploration for Replanning in Cluttered Unknown Environments

文章聚焦无人机在复杂环境中的导航问题,提出基于优化的保守局部规划器与局部探索策略结合的方案,以解决局部规划器陷入局部最小值的问题。介绍了局部轨迹优化方法、地图表示、中间目标选择方式等,通过实验对比不同策略效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Safe Local Exploration for Replanning in Cluttered Unknown Environments


Helen Oleynikova, Zachary Taylor, Roland Siegwart, and Juan Nieto Autonomous Systems Lab, ETH Z¨urich
ETH发表在2018IROS上的

问题描述

考虑无人机在复杂、未知、非结构化环境中的导航,主要解决的问题是:基于优化的局部规划器不能处理局部最小值,或者通过加一个optimistic的全局规划器来解决,所以这篇文章提出的解决方案是:基于优化的保守的局部规划器,与一个局部探索策略结合,后者来选择中间目标,并且他们通过实验证明这种方法会比一个optimistic的全局规划器效果更好,也比单纯的当陷入局部最小值后做单个探索步骤更好

核心问题是:如何设计一个补充性的发现目标的方法,来解决当局部规划器陷入局部最小值的问题

方法

局部轨迹优化

用的是之前论文提到的方法,把轨迹当做高阶的多项式样条,把动力学约束(最大速度和加速度)作为软约束,优化方程是一个复合成本函数,consisting of minimizing a derivative of position such as jerk or snap, combined with the collision gradient cost,包含了位置的导数,比如jerk或者snap,并且和碰撞梯度成本结合

在这里插入图片描述

  • Jd:最小化jerk或者snap的
  • Jc:沿着路径的成本的线性积分的近似值
  • Jg:目标的一个软的成本

优化问题的初始状态应该没有或几乎没有碰撞。本文设置了一个固定的计划范围rp,它是距当前状态的允许的最大距离。 但是,将全局目标gg投影到此半径的球面上通常会导致端点被遮挡。

提出了两种移动这个端点到一个可到达的可作为样条终点的策略:

  • 直线: 从投影后的点(通常被遮挡)往起点移动,直到第一个free的点
  • 基于梯度:沿着梯度到一个free的点,如果方法陷入局部最小值,再用直线的方法
    轨迹只规划了xyz,yaw是free的

地图表示

略过

中间目标选择

当local optimization 失败的话,需要选择新的目标点,这篇文章比较了五个选择新目标点的方式:

  • 随机选取 当轨迹初始位置的周围一个半径的球内随机选取一个点
  • an optimistic (unknown = free) RRT* 比较好的模拟了其他方法的全局规划器。生成一个到目标的稀疏的可见图,然后track图中的第一个点,如果到达第一个点,则跟着图到终点,如果什么时候局部规划器又卡住了,那么重新用RRT*生成一个图
  • a conservative or pessimistic RRT* (unknown = occupied)
  • 从exploration借鉴的"next-best-view"planner(NBVP) 这个方法也是用RRT建树,选择information gain最大的branch来execute,但是与目标无关
  • 本文的exploration 策略,结合了NBVP和追踪目标,以及视野范围

其实才到重点。。。。

与NBVP类似,也是在相机的视锥里计算信息增益,但是不同的是不会建立rrt图,而是在视锥里采样,并且不用视锥法
在起点的周围随机产生N的点,然后计算从当前位置到Xn的yaw,对于这些点,计算信息增益:相机的视锥里unknown的格子
在这里插入图片描述并且不会每个格子都检查,然而采样检查,实验证明5%的采样率只有不到1%的估计误差,但是速度能快三倍
另外对每个各自也评估到全局目标点的距离,并进行归一化,转换为一个reward
在这里插入图片描述reward最高的被选为下一个间隔目标

系统框架

在这里插入图片描述用的是双目相机,地图框架是voxblox,生成的esdf地图(unknown=occupied)用来做局部轨迹优化,tsdf图(unknown=free)用来当局部优化失败时选择目标点

实验结果

积极的RRT效果最差,因为未知的区域被认为是可通行的,所以总会一次次地选择不可行的路径
NBVP好一点
保守的RRT
相对表现不错,因为它只找距离目标最近的free的点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值