datax底层原理_DataX 快速入门

DataX是阿里巴巴开发的数据同步工具,支持多种异构数据源间的高效迁移。采用Framework+plugin架构,通过Reader和Writer插件实现数据采集和写入。DataX作业生命周期涉及Job、Task和TaskGroup,具备数据质量监控、转换功能、速度控制等优势。安装简单,使用JSON配置文件描述任务,支持速度和错误限制定制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. DataX 概述及安装

DataX 是被广泛使用的数据同步工具,由阿里巴巴集团使用 Java 和 Python 开发,实现了包括 MySQL、Oracle、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、DRDS 等各种异构数据源之间的高效数据同步功能。

Sqoop: HDFS 与 RDBMS 之间的 数据迁移 & 同步

DataX:上述任意两种数据源 之间的 数据迁移 & 同步

概述

为了解决异构数据源同步问题,DataX 将复杂的网状的同步链路变成了星型数据链路,DataX 作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到 DataX,便能跟已有的数据源做到无缝数据同步。

DataX 作为星形数据链路的中间载体

DataX 本身作为离线数据同步框架,采用 Framework + plugin 架构构建。将数据源读取和写入抽象成为Reader/Writer插件,纳入到整个同步框架中。

DataX 数据交换原理

核心组件:

Reader:数据采集模块,负责采集数据源的数据,将数据发送给 Framework;

Writer: 数据写入模块,负责不断向 Framework 取数据,并将数据写入到目的端;

Framework:用于连接 reader 和 writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。

经过几年积累,DataX 目前已经有了比较全面的插件体系,主流的 RDBMS 数据库、NOSQL、大数据计算系统都已经接入。

DataX 目前支持数据参见官网(https://github.com/alibaba/DataX/blob/master/introduction.md)。

DataX 3.0 开源版本支持单机多线程模式完成同步作业运行,本小节按一个 DataX 作业生命周期的时序图,从整体架构设计非常简要说明 DataX 各个模块相互关系。

DataX 底层运行流程原理

核心模块

DataX 完成单个数据同步的作业,称为 Job。

DataX 接受到一个 Job 之后,将启动一个进程来完成整个作业同步过程。

DataX Job 模块是单个作业的中枢管理节点,

承担了数据清理、子任务切分(将单一作业计算转化为多个子 Task)、TaskGroup 管理等功能。

DataX Job 启动后,会根据不同的源端切分策略,

将 Job 切分成多个小的 Task(子任务),以便于并发执行。

Task 是 DataX 作业的最小单元,每一个 Task 都会负责一部分数据的同步工作。

切分多个 Task 之后,DataX Job 会调用 Scheduler 模块,

根据配置的并发数据量,将拆分成的 Task 重新组合,组装成 TaskGroup(任务组)。

每一个 TaskGroup 负责以一定的并发运行完毕分配好的所有 Task,默认单个任务组的并发数量为 5。

每一个 Task 都由 TaskGroup 负责启动,

Task 启动后,会固定启动 Reader => Channel => Writer 的线程来完成任务同步工作。

DataX 作业运行起来之后,Job 监控并等待多个 TaskGroup 模块任务完成,

等待所有 TaskGroup 任务完成后 Job 成功退出。

否则,异常退出,进程退出值非0。

DataX 3.0 六大核心优势

可靠的数据质量监控

丰富的数据转换功能

精准的速度控制

强劲的同步性能

健壮的容错机制

极简的使用体验

DataX 安装配置

DataX 官网:https://github.com/alibaba/DataX

前置条件:Linux、JDK(1.8以上,推荐1.8)、Python(推荐Python2.6.X)

DataX 的安装比较简单,基本上是开箱即用:

$ cd {YOUR_DATAX_HOME}/bin

$ python datax.py {YOUR_JOB.json}

$ python $DATAX_HOME/bin/datax.py $DATAX_HOME/job/job.json

自检脚本:python {YOUR_DATAX_HOME}/bin/datax.py {YOUR_DATAX_HOME}/job/job.json

测试

2. DataX 使用案例

Reader 和 Writer 插件

DataX3.0 版本提供的 Reader 插件和 Writer 插件,每种读插件都有一种和多种切分策略:

"reader": {

"name":"mysqlreader", #从 mysql 数据库获取数据(也支持 sqlserverreader, oraclereader)

"name":"txtfilereader", #从本地获取数据

"name":"hdfsreader", #从 hdfs文件、hive表获取数据

"name":"streamreader", #从 stream 流获取数据(常用于测试)

"name":"httpreader", #从 http URL 获取数据

}

"writer": {

"name":"hdfswriter", #向 hdfs、hive表写入数据

"name":"mysqlwriter ", #向 mysql 写入数据(也支持 sqlserverwriter, oraclewriter)

"name":"streamwriter ", #向 stream 流写入数据(常用于测试)

}

json 配置文件模板

整个配置文件是一个 job 的描述;

job 下面有两个配置项,content 和 setting,其中 content 用来描述该任务的源和目的端的信息,setting 用来描述任务本身的信息;

content 又分为两部分,reader 和 writer,分别用来描述源端和目的端的信息;

setting 中的 speed 项表示同时起几个并发执行该任务;

job 的基本配置

{

"job": {

"content": [{

"reader": {

"name":"",

"parameter": {}

},

"writer": {

"name":"",

"parameter": {}

}

}],

"setting": {

"speed": {},

"errorLimit": {}

}

}

}

job Setting 配置

{

"job": {

"content": [{

"reader": {

"name":"",

"parameter": {}

},

"writer": {

"name":"",

"parameter": {}

}

}],

"setting": {

"speed": {

"channel":1,

"byte":104857600

},

"errorLimit": {

"record":10,

"percentage":0.05

}

}

}

}

job.setting.speed(流量控制)

Job 支持用户对速度的自定义控制,channel 的值可以控制同步时的并发数,byte 的值可以控制同步时的速度。

job.setting.errorLimit(脏数据控制)

Job 支持用户对于脏数据的自定义监控和告警,包括对脏数据最大记录数阈值(record 值)或者脏数据占比阈值(percentage 值),当 Job 传输过程出现的脏数据大于用户指定的数量/百分比,DataX Job 报错退出。

应用案例:Stream ==> Stream

使用 streamreader + streamwriter(这种情况常用于测试)

配置文件:stream2stream.json

{

"job": {

"content": [{

"reader": {

"name": "streamreader",

"parameter": {

"sliceRecordCount": 10,

"column": [{

"type": "String",

"value": "hello DataX"

}, {

"type": "string",

"value": "DataX Stream To Stream"

}, {

"type": "string",

"value": "数据迁移工具"

}]

}

},

"writer": {

"name": "streamwriter",

"parameter": {

"encoding": "GBK",

"print": true

}

}

}],

"setting": {

"speed": {

"channel": 2

}

}

}

}

输入执行命令:

python $DATAX_HOME/bin/datax.py ../job/stream2stream.json

运行结果

提示信息

注:json 配置文件中设置了 sliceRecordCount = 10 和 channel = 2,因此共打印了 20 条数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值