2020-4-14 深度学习笔记19 - 近似推断 2 (最大后验推断MAP和稀疏编码 )

本文介绍了深度学习中的近似推断,重点讲解了最大后验推断MAP,它用于计算缺失变量的最可能值。MAP推断在稀疏编码模型中作为特征提取和学习机制广泛应用,而稀疏编码则通过加入稀疏性先验在隐藏层实现。文章阐述了稀疏编码的优化问题和解决方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第十九章 近似推断 Approximate Inference

中文
英文

2020-4-13 深度学习笔记19 - 近似推断 1 (把推断视作优化问题-证据下界,期望最大化EM-最大化下界 )

最大后验推断和稀疏编码

1.最大后验推断MAP

当训练带有潜变量的概率模型时,我们通常关注于计算 p ( h ∣ v ) p(h\mid v) p(hv)。 另一种可选的推断形式是计算一个缺失变量的最可能值来代替在所有可能值的完整分布上的推断。 在潜变量模型中,这意味着计算
在这里插入图片描述

这被称作最大后验推断maximum a posteriori,简称MAP推断。

具体地说,我们令分布 q q q满足一个Dirac分布:
q ( h ∣ v ) = δ ( h − μ ) q(h∣v)=δ(h−μ) q(hv)=δ(hμ)

Dirac分布是一种常见的概率分布。
Dirac分布可保证概率分布中所有质量都集中在一个点上
Dirac 分布经常作为 经验分布(empirical distribution)的一个组成部分出现

意味着我们可以通过 u u u完全控制分布 q q

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值