2020-7-27 吴恩达DL学习-C4 卷积神经网络-第一周 CNN(1.2 边缘检测示例-卷积计算如何发现边缘(过滤器/核))

本文通过吴恩达的深度学习课程介绍了卷积神经网络(CNN)如何使用过滤器进行边缘检测。以一个6×6灰度图像为例,解释了如何通过3×3过滤器检测垂直和水平边缘。卷积运算的过程包括元素乘法和加法,最终得到一个4×4的矩阵表示检测到的边缘。这种边缘检测方法适用于发现图像中的垂直和水平特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c
2.详细笔记网站(中文):http://www.ai-start.com/dl2017/
3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai

1.2 边缘检测示例 Edge detection example

卷积运算是卷积神经网络最基本的组成部分,使用边缘检测作为入门样例。本节课中,你会看到卷积是如何进行运算的。
在这里插入图片描述

之前的课程中,我说过NN的前几层是如何检测边缘的,然后,后面的层有可能检测到物体的部分区域,更靠后的一些层可能检测到完整的物体,这个例子中就是人脸。在这个本节课中,你会看到如何在一张图片中进行边缘检测。

我们来看下面的例子。
在这里插入图片描述

给了上面这样一张图片,让电脑去搞清楚这张照片里有什么物体,你可能做的第一件事是检测图片中的垂直边缘vertical edges。比如说,在这张图片中的栏杆就对应垂直线,与此同时,行人的轮廓线某种程度上也是垂线,这些线是垂直边缘检测器的输出。

同样,你可能也想检测水平边缘horizontal edges,比如说图中的栏杆就是很明显的水平线,它们也能被检测到。

如何在图像中检测这些边缘

那么如何在图像中检测这些边缘?

看一个例子。
在这里插入图片描述

如上图,这是一个6×6的灰度图像。因为是灰度图像,所以它是6×6×1的矩阵,而不是6×6×3的,因为没有RGB三通道。

为了检测图像中的垂直边缘,你可以构造一个3×3矩阵,在CNN的术语中,它被称为过滤器。我要构造一个3×3的过滤器,像这样 [ 1 0 − 1 1 0 − 1 1 0 − 1 ] \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \\\end{bmatrix} 111000<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值