香农公式简介

本文详细阐述了信道容量的概念,通过香农公式探讨了信号功率、噪声功率、信道带宽对信道容量的影响,以及调制信道与编码信道的区别。重点讲解了如何通过优化这些参数来提升通信效率,并介绍了信噪比与带宽互换的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

信道容量:指信道中信息无差错传输的最大速率。
信道模型中定义了两种广义信道,调制信道和编码信道。
调制信道是一种连续信道,可以用连续信道的信道容量来表征;编码信道是一种离散信道,可以用离散信道的信道容量来表征。
香农公式
设信道带宽为B(单位为HZ),信道的输入信号为x(t),信道加性高斯白噪声为n(t),则信道输出为:y(t)= x(t)+ n(t),其中,x(t)的功率为S,信道噪声功率为N。n(t)的均值为0,方差为σ^2。
信道容量C表征了信道可能传输的最大信息速率,它是信道能达到的最大传输能力。
香农公式如下:
在这里插入图片描述
香农公式表明,当信号与信道加性高斯白噪声的平均功率给定时,在具有一定频带宽度的信道上,理论上单位时间内可能传输的信息量的极限数值。
只要传输速率小于等于信道容量,则总可以找到一种信道编码方式,实现无差错传输;若传输速率大于信道容量,则不可能实现无差错传输。

由香农公式可以得到以下结论:
1.增大信号功率S可以增加信道容量,若信号功率趋于无穷大,则信道容量也趋于无穷大。
2.减小噪声功率N(或减小噪声功率谱密度n0),可以增加信道容量,若噪声功率趋于0(或噪声功率谱密度n0 趋于0),则信道容量趋于无穷大。
3.增大信道带宽B可以增加信道容量,但不能使信道容量无限制增大,信道带宽B趋于无穷大时,信道容量的极限值为:
在这里插入图片描述
上式表明,保持S/n0一定,即使信道宽度B趋于无穷大,信道容量C也是有限的,这是因为信道宽度B趋于无穷大时,噪声的功率N也趋于无穷大。
4.信道容量一定时,带宽B和信噪比S/N之间可以彼此互换。
在这里插入图片描述
香农公式可以画成上图中的曲线,横坐标为信噪比,单位为分贝(dB),纵坐标为C/W(这里的W就是上面公式中的信道宽度B),单位为b/s/HZ,其物理意义为归一化信道容量,即单位频带的信息传输率。C/W越大,频带利用率越高,信道利用的就越充分,该曲线表示任何实际通信系统所能到达的频带利用率极限。曲线下部是实际通信系统所能达到的区域,上部则是不可能实现的。
在这里插入图片描述
若将纵坐标改为W/C,则可得到另一条曲线,这条曲线表示归一化信道带宽与信噪比之间的关系,阐明了信噪比与带宽的互换关系。曲线上部是实际通信系统所能达到的区域,下部则是不可能实现的。
参考视频:https://www.bilibili.com/video/BV1BW411s7e4?p=7

### 香农公式简介 香农公式(Shannon Formula)描述了通信系统的最大传输速率与带宽、信号噪声功率比的关系。其表达形式如下: \[ C = B \cdot \log_2(1 + S/N) \] 其中: - \( C \) 表示信道容量,单位为比特每秒 (bit/s)[^5]; - \( B \) 是信道的带宽,单位为赫兹 (Hz)[^5]; - \( S/N \) 是信噪比,通常以无量纲的形式给出。 以下是几个基于香农公式的典型计算题和练习示例。 --- ### 示例一:已知带宽和信噪比求信道容量 #### 问题描述 某通信信道的带宽为 3 kHz,信噪比为 30 dB。试计算该信道的最大数据传输率。 #### 解答过程 首先将信噪比从分贝转换为线性比例: \[ S/N = 10^{(30 / 10)} = 1000 \] 接着代入香农公式: \[ C = B \cdot \log_2(1 + S/N) = 3000 \cdot \log_2(1 + 1000) \] 由于 \(\log_2(x)\) 可通过换底公式转化为自然对数: \[ \log_2(1001) = \frac{\ln(1001)}{\ln(2)} \] 因此, \[ C = 3000 \cdot \frac{\ln(1001)}{\ln(2)} \approx 3000 \cdot 9.965784 \approx 29897.35 \text{ bit/s} \][^5] 最终结果约为 **29.9 kbps**。 --- ### 示例二:已知信道容量和带宽反推信噪比 #### 问题描述 一条电话线路的数据传输能力为 32 kbps,而其可用带宽为 4 kHz。问这条线路的有效信噪比是多少? #### 解答过程 根据香农公式重新整理得到信噪比的表达式: \[ S/N = 2^{(C/B)} - 1 \] 代入给定参数: \[ S/N = 2^{(32000 / 4000)} - 1 = 2^8 - 1 = 256 - 1 = 255 \][^5] 所以有效信噪比为 **255** 或者约等于 **24 dB**(因为 \(10 \cdot \log_{10}(255) \approx 24\))。 --- ### 示例三:比较不同条件下的信道性能 #### 问题描述 有两个无线通信系统 A 和 B,它们分别具有以下特性: - 系统 A 的带宽为 1 MHz,信噪比为 20 dB; - 系统 B 的带宽为 2 MHz,信噪比为 15 dB。 哪个系统的理论最大吞吐量更高?高多少? #### 解答过程 对于系统 A: \[ S/N_A = 10^{(20 / 10)} = 100,\quad C_A = 10^6 \cdot \log_2(1 + 100) = 10^6 \cdot \log_2(101) \] 利用换底公式: \[ C_A = 10^6 \cdot \frac{\ln(101)}{\ln(2)} \approx 10^6 \cdot 6.658 \approx 6.66 \times 10^6 \text{ bps} \][^5] 对于系统 B: \[ S/N_B = 10^{(15 / 10)} = 31.62,\quad C_B = 2 \times 10^6 \cdot \log_2(1 + 31.62) = 2 \times 10^6 \cdot \log_2(32.62) \] 同样采用换底公式: \[ C_B = 2 \times 10^6 \cdot \frac{\ln(32.62)}{\ln(2)} \approx 2 \times 10^6 \cdot 5.02 \approx 10.04 \times 10^6 \text{ bps} \][^5] 对比两者的结果可以发现,\(C_B > C_A\),具体高出的部分为: \[ C_B - C_A = (10.04 - 6.66) \times 10^6 = 3.38 \times 10^6 \text{ bps} = 3.38 \text{ Mbps}. \] --- ### Python 实现香农公式计算 下面提供一段简单的 Python 代码用于验证以上计算结果: ```python import math def shannon_capacity(B, SNR_dB): """Calculate the Shannon capacity given bandwidth and SNR in dB.""" SNR_linear = 10**(SNR_dB / 10) return B * math.log2(1 + SNR_linear) # Example usage bandwidth_A = 1e6 # Hz SNR_dB_A = 20 capacity_A = shannon_capacity(bandwidth_A, SNR_dB_A) bandwidth_B = 2e6 # Hz SNR_dB_B = 15 capacity_B = shannon_capacity(bandwidth_B, SNR_dB_B) print(f"Capacity of System A: {capacity_A:.2f} bps") print(f"Capacity of System B: {capacity_B:.2f} bps") ``` 运行此脚本会输出两个系统的信道容量数值。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西岸贤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值