1. SVD分解定义(奇异值分解)
对于秩为r的矩阵A ∈ R m × n \in R^{m\times n} ∈Rm×n存在正交矩阵 U m × m , V n × n U_{m\times m},V_{n\times n} Um×m,Vn×n和对角矩阵 D r × r = d i a g ( σ 1 , σ 2 , . . . , σ r ) D_{r\times r}=diag(\sigma_1,\sigma_2,...,\sigma_r) Dr×r=diag(σ1,σ2,...,σr)使得
A = U ( D 0 0 0 ) V T , σ 1 ≥ σ 2 ≥ σ 3 . . . ≥ σ r > 0 A=U\begin{pmatrix} D&0\\0&0 \end{pmatrix}V^T,\sigma_1\geq\sigma_2\geq\sigma_3...\geq \sigma_r>0 A=U(