SVD分解、特征值分解

本文详细介绍了奇异值分解(SVD)的定义,解释了如何求解U、Σ、V矩阵,并对比了特征值分解。SVD适用于任意形状矩阵,而在三维点云拟合平面等问题中扮演关键角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. SVD分解定义(奇异值分解)

对于秩为r的矩阵A ∈ R m × n \in R^{m\times n} Rm×n存在正交矩阵 U m × m , V n × n U_{m\times m},V_{n\times n} Um×m,Vn×n和对角矩阵 D r × r = d i a g ( σ 1 , σ 2 , . . . , σ r ) D_{r\times r}=diag(\sigma_1,\sigma_2,...,\sigma_r) Dr×r=diag(σ1,σ2,...,σr)使得
A = U ( D 0 0 0 ) V T , σ 1 ≥ σ 2 ≥ σ 3 . . . ≥ σ r > 0 A=U\begin{pmatrix} D&0\\0&0 \end{pmatrix}V^T,\sigma_1\geq\sigma_2\geq\sigma_3...\geq \sigma_r>0 A=U(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值