数据可视化之各类图表绘制(待补充)

本文介绍了数据可视化的几种常见图表类型,包括散点图、折线图和柱状图的绘制方法。散点图利用matplotlib库的plt.plot函数实现,可调整颜色和轴标签。折线图与散点图相似,但多了linewidth参数,能展现数据趋势。柱状图则是展示数据分布的有效方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

散点图的绘制

散点图 (scatter diagram): 是以一个变量为横坐标,另一变量为纵坐标,利用散点的分布形态放映变量关系的一种图形。主要由matplotlib库里的plt.plot(x,y,style,color=(r,g,b)’)函数实现,主要由如上四个参数。

# -*- coding: utf-8 -*-
import pandas as pd
import matpotlib as mpl
import matplotlib.pyplot as plt
data = pd.read_csv(r"/Users/herenyi/Downloads/5/5.1/data.csv",encoding = 'UTF-8')
plt.plot(data['广告费用'], data['购买用户数'], 'o')

在这里插入图片描述
如果想要改变颜色,则需调动color参数。

plt.plot(data['广告费用'], data['购买用户数'], 'o', color=(1, 1, 0))

在这里插入图片描述
添加x,y轴标签则只需调用,如下函数,不过由于中文字体不能显示于原生环境中,我们用Fontproperties函数来转变字体到中文。这是我个人找到的字体,大家可以直接搜索自己电脑中的字体文件,ttf后缀的。

from matplotlib.font_manager import FontProperties
Chinese = FontProperties(fname = r'/Users/Shared/Epic Games/Fortnite/Engi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值